Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (8): 1558-1565    DOI: 10.3785/j.issn.1008-973X.2021.08.017
能源工程     
旋转滑动弧等离子体固氮的物理特性
陈航(),吴昂键*(),郑佳庚,李晓东,严建华
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Characteristics of rotating gliding arc on nitrogen fixation
Hang CHEN(),Ang-jian WU*(),Jia-geng ZHENG,Xiao-dong LI,Jian-hua YAN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1214 KB)   HTML
摘要:

采用旋转滑动弧等离子体(RGA)进行固氮实验研究. 为了考察在N2/O2气氛下放电的物理特性,利用光谱仪、高速摄影仪、示波器等进行研究,考察放电参数、气体体积流量对于氮气的振动温度、氮气的转动温度和电弧特性的影响,以及以上因素对于RGA固氮效果的综合影响. 实验结果表明,放电过程可以生产大量NOx气体,通过光谱检测可以清晰观测到NO的γ带系、氮气第二正带系和氮气离子第一负带系. 增加放电的氧气体积分数,氮气的振动温度将升高,并伴随着固氮产出的提高;在一定范围内(10%~40%),氧气体积分数提升在提升固氮效果的同时,对放电稳定性有不利影响. 综合分析表明,接近空气的放电气氛(氧气体积分数为20%)或直接采用空气放电,能够实现旋转滑动弧等离子体放电固氮的最佳效果.

关键词: 旋转滑动弧等离子体固氮光谱分析高速摄影    
Abstract:

Rotating gliding arc (RGA) was applied to nitrogen fixation. Optical diagnosis, high speed photography and oscilloscope were used to investigate the physical characteristics of the N2/O2 discharge. The effects of discharge parameters and volume flow rates on vibrational temperature, rotational temperature and arc characteristics were analyzed, which influenced the nitrogen fixation performance of RGA. Results show that NOx of high concentration was produced in the discharge process, and typical NO-γ, N2 (C-B) and N2+ (B-X) bands were detected by optical diagnosis. The increase of oxygen volume fraction would raise the vibrational temperature of nitrogen, accompanied by the rise of NOx concentration. Higher oxygen volume fraction (10%~40%) reached better output while led to instability of discharge. The mixture of 20% oxygen volume fraction or the air could be the most optimum gas supply to reach better nitrogen fixation performance.

Key words: rotating gliding arc    plasma    nitrogen fixation    optical diagnosis    high-speed photography
收稿日期: 2021-02-01 出版日期: 2021-09-01
CLC:  TK 227  
基金资助: 国家自然科学基金青年科学基金资助项目(51806193);国家自然科学基金资助项目(51976191)
通讯作者: 吴昂键     E-mail: chenhangtry@zju.edu.cn;wuaj@zju.edu.cn
作者简介: 陈航(1996—),男,硕士生,从事低温等离子体在气体处置、重整方面的应用研究. orcid.org/0000-0001-5725-3541. E-mail: chenhangtry@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈航
吴昂键
郑佳庚
李晓东
严建华

引用本文:

陈航,吴昂键,郑佳庚,李晓东,严建华. 旋转滑动弧等离子体固氮的物理特性[J]. 浙江大学学报(工学版), 2021, 55(8): 1558-1565.

Hang CHEN,Ang-jian WU,Jia-geng ZHENG,Xiao-dong LI,Jian-hua YAN. Characteristics of rotating gliding arc on nitrogen fixation. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1558-1565.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.017        https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1558

图 1  旋转滑动弧固氮实验系统
图 2  不同气氛放电下的特征发射光谱谱图
图 3  20%和40%氧气体积分数下的氮气离子第一负带系和氮气第二正带系
$\varphi({\rm{O}}_2) $/% Tvib/K Trot/K $\varphi({\rm{NO}}_x) $/%
10 5290 2500 0.9617
20 5900 2170 1.0320
30 6880 2000 1.0513
40 7280 1950 1.1349
表 1  6 L/min体积流量下,不同氧气体积分数对应的N2振动温度、转动温度及NOx体积分数均值
图 4  20%氧气体积分数下的N2振动温度及固氮效果随气体体积流量的变化趋势
图 5  6 L/min体积流量下,20%、30%氧气体积分数下的高速摄影图片
图 6  6 L/min体积流量下,不同氧气体积分数下的电参数特性
图 7  6 L/min体积流量下,不同电源输出电压下的空气放电效果
1 PATIL B S, PEETERS F J J, VAN ROOIJ G J, et al Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant[J]. AIChE Journal, 2018, 64 (2): 526- 537
doi: 10.1002/aic.15922
2 SCHROCK R R Reduction of dinitrogen[J]. Proceedings of the National Academy of Sciences, 2006, 103 (46): 17087
doi: 10.1073/pnas.0603633103
3 CHERKASOV N, IBHADON A O, FITZPATRICK P A review of the existing and alternative methods for greener nitrogen fixation[J]. Chemical Engineering and Processing: Process Intensification, 2015, 90: 24- 33
doi: 10.1016/j.cep.2015.02.004
4 PATIL B S, CHERKASOV N, LANG J, et al Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides [J]. Applied Catalysis B: Environmental, 2016, 194: 123- 133
doi: 10.1016/j.apcatb.2016.04.055
5 INGELS R, GRAVES D Improving organic fertilizer and nitrogen use efficiency via air plasma and distributed renewable energy[J]. Plasma Medicine, 2016, 5: 257- 270
6 朱凤森, 张浩, 严建华, 等 磁旋滑动弧促进甲烷部分氧化重整制氢[J]. 高电压技术, 2017, 43 (6): 1893- 1900
ZHU Feng-sen, ZHANG Hao, YAN Jian-hua, et al Rotating gliding arc assisted methane partial oxidation for hydrogen production[J]. High Voltage Engineering, 2017, 43 (6): 1893- 1900
7 GRAVES D B, BAKKEN L B, JENSEN M B, et al Plasma activated organic fertilizer[J]. Plasma Chemistry and Plasma Processing, 2018, 39 (1): 1- 19
doi: 10.1007/s11090-018-9944-9
8 AZIZOV R I, ZHIVOTOV V K, KROTOV M, et al Synthesis of nitrogen oxides in a nonequilibrium microwave discharge under electron-cyclotron resonance conditions[J]. Khimiya Vysokikh Energii, 1980, 14: 366- 368
9 YANG J, LI T, CHONGSHAN Z, et al Nitrogen fixation in water using air phase gliding arc plasma[J]. Journal of the Electrochemical Society, 2016, 163: 288- 292
doi: 10.1149/2.0221610jes
10 MALIK M Nitric oxide production by high voltage electrical discharges for medical uses: a review[J]. Plasma Chemistry and Plasma Processing, 2016, 36: 737- 766
doi: 10.1007/s11090-016-9698-1
11 LINDSAY A, BYRNS B, KING W, et al Fertilization of radishes, tomatoes, and marigolds using a large-volume atmospheric glow discharge[J]. Plasma Chemistry and Plasma Processing, 2014, 34: 1271- 1290
doi: 10.1007/s11090-014-9573-x
12 BRISSET J L, PAWLAT J Chemical effects of air plasma species on aqueous solutes in direct and delayed exposure modes: discharge, post-discharge and plasma activated water[J]. Plasma Chemistry and Plasma Processing, 2016, 36: 355- 381
doi: 10.1007/s11090-015-9653-6
13 THIRUMDAS R, KOTHAKOTA A, ANNAPURE U, et al Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture[J]. Trends in Food Science & Technology, 2018, 77: 21- 31
14 胡辉, 杨旗, 包滨, 等 合成医用NO的等离子体温度的光谱测量与计算[J]. 高电压技术, 2009, 35 (2): 319- 323
HU Hui, YANG Qi, BAO Bin, et al Spectrum measurement and calculation of plasma temperature for generation medicinal inhaled nitric oxide[J]. High Voltage Engineering, 2009, 35 (2): 319- 323
15 MEI D, LIU S, WANG Y, et al Enhanced reforming of mixed biomass tar model compounds using a hybrid gliding arc plasma catalytic process[J]. Catalysis Today, 2019, 337: 225- 233
doi: 10.1016/j.cattod.2019.05.046
16 ZHANG H, LI L, XU R, et al Plasma-enhanced catalytic activation of CO2 in a modified gliding arc reactor [J]. Waste Disposal & Sustainable Energy, 2020, 2: 139- 150
17 杜长明, 李俊岭, 严建华 滑动弧放电等离子体去除甲苯的实验研究[J]. 高电压技术, 2008, (3): 512- 516
DU Chang-ming, LI Jun-ling, YAN Jian-hua Removal of toluene by gliding arc discharge plasma[J]. High Voltage Engineering, 2008, (3): 512- 516
18 朱凤森. 旋转滑动弧等离子体裂解生活垃圾气化焦油化合物的基础研究[D]. 杭州: 浙江大学, 2018.
ZHU Feng-sen. Fundamental research of decomposition of tar compounds from the gasification of municipal solid waste by rotating gliding arc plasma[D]. Hangzhou: Zhejiang University, 2018.
19 张浩. 协同驱动旋转滑动弧温等离子体重整甲烷/甲醇制氢基础研究[D]. 杭州: 浙江大学, 2016.
ZHANG Hao. Fundamental research of rotating gliding arc warm plasma assisted methane/methanol reforming for hydrogen production[D]. Hangzhou: Zhejiang University, 2016.
20 谢维杰. 光谱解析低温等离子体中O2, N2, CO2的活性中间体及其环境化学行为[D]. 上海: 上海交通大学, 2008.
XIE Wei-jie. Spectroscopic diagnostics of active species and their environmental chemical process of O2, N2, CO2 in cold plasma[D]. Shanghai: Shanghai Jiao Tong University, 2008.
21 MARINOV D, GUAITELLA O, ROUSSEAU A, et al Production of molecules on a surface under plasma exposure: example of NO on pyrex[J]. Journal of Physics D Applied Physics, 2010, 43: 115203
doi: 10.1088/0022-3727/43/11/115203
22 GOMES A M, BACRI J, SARRETTE J P, et al Measurement of heavy particle temperature in a radiofrequency air discharge at atmospheric pressure from the numerical simulation of the NO γ system [J]. Journal of Analytical Atomic Spectrometry, 1992, 7: 1103- 1109
doi: 10.1039/ja9920701103
23 LAUX C O, SPENCE T G, KRUGER C H, et al Optical diagnostics of atmospheric pressure air plasmas[J]. Plasma Sources Science and Technology, 2003, 12 (2): 125- 138
doi: 10.1088/0963-0252/12/2/301
24 WU A, ZHANG H, LI X, et al Determination of spectroscopic temperatures and electron density in rotating gliding arc discharge[J]. IEEE Transactions on Plasma Science, 2015, 43: 836- 845
doi: 10.1109/TPS.2015.2469875
25 GATILOVA L V, ALLEGRAUD K, GUILLON J, et al NO formation mechanisms studied by infrared laser absorption in a single low-pressure plasma pulse[J]. Plasma Sources Science and Technology, 2007, 16 (1): 107- 114
doi: 10.1088/0963-0252/16/1/S12
26 RUSANOV V D, FRIDMAN A A, SHOLIN G V The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules[J]. Soviet Physics Uspekhi, 1981, 24 (6): 447- 474
doi: 10.1070/PU1981v024n06ABEH004884
27 WANG W, PATIL B, HEIJKERS S, et al Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling[J]. ChemSusChem, 2017, 10 (10): 2145- 2157
doi: 10.1002/cssc.201700095
28 何立明, 张达, 陈一, 等 三维旋转滑动弧等离子体助燃激励器的光谱特性实验[J]. 空军工程大学学报: 自然科学版, 2017, 18 (4): 1- 6
HE Li-ming, ZHANG Da, CHEN Yi, et al An experiment of spectral characteristics on plasma-assisted combustion with 3d rotating gliding arc discharge[J]. Journal of Air Force Engineering University: Natural Science Edition, 2017, 18 (4): 1- 6
doi: 10.3969/j.issn.1009-3516.2017.04.001
[1] 蔡帮煌,宋慧敏,郭善广,张海灯,盛佳明. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848.
[2] 施春飞, 孙毅, 王晓萍. SPRi传感器的数据处理方法[J]. 浙江大学学报(工学版), 2018, 52(4): 657-662.
[3] 张德胜, 石磊, 陈健, 潘强, 施卫东. 轴流泵叶轮叶顶区空化特性试验分析[J]. 浙江大学学报(工学版), 2016, 50(8): 1585-1592.
[4] 徐辉, 蔡忆昔, 李小华, 施蕴曦, 李伟俊 . 低温等离子体降低柴油机微粒和NOx排放试验研究[J]. 浙江大学学报(工学版), 2016, 50(12): 2418-2423.
[5] 邱坤赞,耿雪威,蔡宇翔,竺新波,郑成航,高翔. 等离子体协同V2O5 WO3/TiO2催化降解恶臭气体的试验研究[J]. 浙江大学学报(工学版), 2016, 50(1): 63-69.
[6] 李秋顺,成荣,张旭霖,陈燕,史建国,李明宇,于永江,董文飞. 聚合物薄膜对表面等离子体共振光谱的调制[J]. 浙江大学学报(工学版), 2015, 49(9): 1796-1804.
[7] 张连成, 黄逸凡, 刘振, 闫克平. 水静压对脉冲放电及深拖等离子体震源的影响[J]. 浙江大学学报(工学版), 2015, 49(7): 1395-1400.
[8] 麻剑, 谢阳, 罗麒元, 许沧粟. 精制生物油和柴油混合燃料的柴油机性能[J]. 浙江大学学报(工学版), 2015, 49(4): 632-637.
[9] 郑超,徐羽贞,黄逸凡,刘振,闫克平. 脉冲等离子体射流杀灭表面和水中的细菌[J]. 浙江大学学报(工学版), 2014, 48(7): 1329-1335.
[10] 邵振华, 魏博伦, 叶志平, 何奕, 施耀. 等离子体联合光催化治理喷漆废气[J]. 浙江大学学报(工学版), 2014, 48(6): 1127-1131.
[11] 张云卿, 李晓东, 杜长明, 孙晓明, 任咏, 严建华. 磁旋转滑动弧电参数与电弧图像分析[J]. J4, 2013, 47(4): 687-691.
[12] 陈永铎, 王晓晨, 李颖, 朱安娜, 刘振, 闫克平. 等离子体辅助Fenton洗消甲基膦酸二甲酯水溶液[J]. J4, 2013, 47(12): 2195-2201.
[13] 倪明江, 程奎, 余量, 李晓东, 陆胜勇, 严建华. 逆向涡流等离子体降解飞灰中二恶英的研究[J]. J4, 2012, 46(4): 584-589.
[14] 彭盛华, 张欣, 何建军. 氩等离子体诱导量子阱混合技术[J]. J4, 2011, 45(6): 1057-1061.
[15] 王勤, 严建华, 潘新潮, 池涌, 高飞. 利用热等离子体熔融垃圾焚烧飞灰[J]. J4, 2011, 45(1): 141-145.