Please wait a minute...
J4  2013, Vol. 47 Issue (4): 687-691    DOI: 10.3785/j.issn.1008-973X.2013.04.019
能源工程     
磁旋转滑动弧电参数与电弧图像分析
张云卿1, 李晓东1, 杜长明2, 孙晓明1, 任咏1, 严建华1
1.浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027;2. 中山大学 环境科学与工程学院,广东 广州 510275
Analysis of electical parameter and image of rotary gliding arc driven by magnetic field
ZHANG Yun-qing1, LI Xiao-dong1, DU Chang-ming2,SUN Xiao-ming1, REN Yong1, YAN Jian-hua1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China; 2. School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
 全文: PDF  HTML
摘要:

研究磁场驱动旋转滑动弧的物理特性.在反应系统中,高压直流电通过滑动弧两极产生稳定的电弧,由切向进气的载气吹起并产生旋转滑动弧,在滑动弧区域内附加磁场用以加速滑动弧的旋转.研究表明:磁场驱动不仅可以提高等离子滑动弧旋转速度,而且可以增大等离子体在气流场中的分布.当空气作为载气时,电弧电压电流波形最稳定,周期为3.5~4.4 ms;当氧气作为载气时,电弧击穿电压低于800 V,维持电压低于500 V,平均功率为95.8 W,相对其他载气时较低,电弧电压图像存在平稳过渡区.利用高速摄影技术研究磁感应强度变化时电弧的运动情况.结果显示:低磁感应强度时旋转滑动弧会出现双弧现象;高磁感应强度时电弧不再断裂,与外电极的接触点出现近似等速的跃迁.

Abstract:

Physical characteristics of a rotary gliding arc driven by magnetic field were analyzed. In this system, the two electrodes of the reactor were supplied with DC high voltage to form a stable arc. Carrier gas was injected by tangential inlets to form a swirling flow field in the reactor. The gliding arc was propelled by the swirling flow and the magnetic field accelerated the rotation of arc. Results showed that the rotation speed of the arc was increased and the plasma region was enlarged with the magnetic field. The voltage waveform of discharge in air flow was relatively stable, and the fluctuation cycle of voltage was 3.5~4.4 ms. When O2 was used as the carrier gas, the breakdown voltage was lower than 800 V, the sustain voltage was lower than 500 V and the average power was 95.8 W, which was lower than that with other kinds of carrier gas. Simultaneously, stable region of the voltage waveform was observed. The motions of arc in magnetic fields with different flux densities were recorded by a high-speed camera. Results showed that a double-arc phenomenon was observed in the magnetic field with a low flux density. However, for a high flux density, the arc did not break any more and the contacts between the arc and outer electrode moved along the inner wall of the outer electrode with a nearly constant speed.

出版日期: 2013-04-01
:  TK 227  
基金资助:

 国家自然科学基金资助项目(51076142).

通讯作者: 李晓东,男,教授,博导.     E-mail: lixd@zju.edu.cn
作者简介: 张云卿(1988—),男,硕士生,从事磁旋滑动弧制氢技术的研究.E-mail:zhang3060823040@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张云卿, 李晓东, 杜长明, 孙晓明, 任咏, 严建华. 磁旋转滑动弧电参数与电弧图像分析[J]. J4, 2013, 47(4): 687-691.

ZHANG Yun-qing, LI Xiao-dong, DU Chang-ming, SUN Xiao-ming, REN Yong, YAN Ji. Analysis of electical parameter and image of rotary gliding arc driven by magnetic field. J4, 2013, 47(4): 687-691.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.04.019        http://www.zjujournals.com/eng/CN/Y2013/V47/I4/687

[1] XIA W D, LI L C, ZHAO Y H, et al. Dynamics of large-scale magnetically rotating arc plasmas [J]. Applied Physics Letters, 2006, 88(21): 211501-1-3.

[2] KALRA C S, GUSTOL A F, FRIDMAN A. Gliding arc discharge as a source of intermediate plasma for methane partial oxidation [J]. IEEE Transactions on Plasma Science, 2005, 33(1): 32-41.

[3] RUSU I. On a possible mechanism of the methane steam reforming in a gliding arc reactor [J]. Chemical Engineering Journal, 2003, 91(1): 23-31.

[4] STREETHAWONG T, THAKONPATTHANAKUN P, CHAVADEJ S. Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system [J]. International Journal of Hydrogen Energy, 2007, 32(8): 1067-1079.

[5] 林烈,吴承康.磁驱动滑动弧放电大气压非平衡等离子体[J].核聚变与等离子体物理,2000,20(2): 121-124.

LIN Lie, WU Cheng-kang.Characteristics of non-equilibrium plasma at atmospheric pressure with glide arc driven by magnetic field [J]. Nuclear Fusion and Plasma Physics, 2000, 20(2): 121-124.

[6] GANGOLI S, GUTSOL A, FRIDMAN A. Rotating non-equilibrium gliding arc plasma disc for enhancement in ignition and combustion of hydrocarbon fuels [C]∥ 17th International Symposium on Plasma Chemistry. Toronto, Canada:International Plasma Chemistry Society, 2005: 1042-1043.

[7] KALRA C S, CHO Y I, GUTSOL A, et al. Gliding arc in tornado using a reverse vortex flow [J]. Review of Scientific Instruments. 2005, 76(2): 025110-1-7.

[8] RUEANGJITT N, JITTIANG W, PORNMAI K, et al. Combined reforming and partial oxidation of CO2 containing natural gas using an AC multistage gliding arc discharge system: effect of stage number of plasma reactors [J]. Plasma Chemistry and Plasma Process, 2009, 29(6): 433-453.

[9] CHUN Y N, YANG Y C, YOSHIKAWA K. Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer [J]. Catalysis Today, 2009, 148(3/4): 283-289.

[10] 杜长明,严建华,李晓东,等.利用滑动弧放电脱除烟气中的多环芳烃和碳黑颗粒[J].中国电机工程学报,2006,26(1): 77-80.

DU Chang-ming, YAN Jian-hua, LI Xiao-dong, et al. Removal of polycyclic aromatic hydrocarbon and soot particles in flue gas by gliding arc discharge [J]. Proceedings of the CSEE, 2006, 26(1): 77-80.

[11] DU C M, YAN J H. Electrical and spectral characteristics of a hybrid gliding arc discharge in air-water [J]. IEEE Transactions on Plasma Science, 2007, 35(6): 1648-1650.

[12] YAN J H, DAI S L, LI X D, et al. Emission spectroscopy diagnosis of the radicals generated in gas-liquid phases gliding arc discharge [J]. Spectroscopy and Spectral Analysis, 2008, 28(8): 1851-1855.

[13] 颜士鑫,李晓东,钟犁,等.滑动弧放电等离子体分解氨气制氢[J].燃烧科学与技术,2011,17(1): 186-190.

YAN Shi-xin, LI Xiao-dong, ZHONG Li, et al. Gliding arc discharge plasma assisted decomposition of ammonia into hydrogen [J]. Journal of Combustion Science and Technology, 2011, 17(1): 186-190.

[14] 杜长明,李俊岭,严建华.滑动弧放电等离子体去除甲苯的实验研究[J].高压电技术,2008,34(3): 512-516.

DU Chang-ming, LI Jun-ling, YAN Jian-hua. Removal of toluene in gliding arc discharge plasma [J]. High Voltage Engineering, 2008, 34(3): 512-516.

[15] EUGEN H. Procedes electriques de mesure et de traitement des polluants [M]. Paris: Tce & Doc, 2002: 333-334.

[16] LEE D H, KIM K T, MIN S C, et al. Plasma-controlled chemistry in plasma reforming of methane [J]. International Journal of Hydrogen Energy. 2010, 35(20): 10967-10976.

[17] MUTAF-YARDIMCI O, SAVELIEV A, FRIDMAN A, et al. Thermal and non-thermal regimes of gliding arc discharge in air flow [J]. Journal of Applied Physics, 2000, 87(4): 1632-1641.

No related articles found!