Please wait a minute...
浙江大学学报(工学版)
化学工程     
水静压对脉冲放电及深拖等离子体震源的影响
张连成1,2, 黄逸凡1,2, 刘振1,2, 闫克平1,2
1. 浙江大学 生物质化工教育部重点实验室,浙江 杭州310027;2. 浙江大学 化学工程与生物工程学系,浙江 杭州310027
Effects of hydrostatic pressure on pulsed discharge and deep-towed seismic source
ZHANG Lian-cheng1,2, HUANG Yi-fan1,2, LIU Zhen1,2, YAN Ke-ping1,2
1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University,Hangzhou 310027, China;2. Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1560 KB)   HTML
摘要:

为了满足未来深拖等离子体震源的应用需求,基于高压脉冲电晕放电技术,研究不同水静压力下高压脉冲放电的电声特性.结果表明:水静压力对高压脉冲放电没有明显抑制,电压电流峰值及脉宽基本一致,波形上升沿高度一致;随着水静压力的增大,脉冲声波幅值呈指数衰减,当深度达到400 m时,声压大约下降一半,1200 m后衰减趋于平缓,单脉冲能量越小,声压级随水静压力增大衰减越快.对深拖等离子体震源进行可行性论证发现,当单脉冲能量高于20 J时,深拖的声压级损失比常规海面拖曳的传播损失小.

Abstract:

The electro-acoustic properties under different hydrostatic pressure were investigated based on the technology of pulsed high voltage corona discharge in order to meet the requirements of future deep-towed plasma seismic source. Experimental results show that high-voltage pulse discharge is not significantly inhibited by hydrostatic pressure. Peak values of voltage and current and their pulse widths are almost consistent and wave fronts are highly coincident. As the hydrostatic pressure increases, the acoustic pressure of shock wave exponentially decays. When the depth reaches 400 m, acoustic pressure nearly drops half, and the decay rate slows down after 1200 m. As the hydrostatic pressure increases, the lower energy of single pulse, the faster is decay rate. The technical feasibility of deep-towed plasma seismic source was demonstrated. Results show that when the energy of single pulse is more than 20 J, the loss of acoustic pressure level of deep-tow is less than the transmission loss of conventional tow.

出版日期: 2015-09-10
:  TQ 9  
基金资助:

国家自然科学基金资助项目(41476080,51377145)

通讯作者: 黄逸凡,男,讲师     E-mail: huangyf@zju.edu.cn
作者简介: 张连成(1990-),男,硕士生,从事应用等离子体技术的研究. E-mail: 21228046@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张连成, 黄逸凡, 刘振, 闫克平. 水静压对脉冲放电及深拖等离子体震源的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.027.

ZHANG Lian-cheng, HUANG Yi-fan, LIU Zhen, YAN Ke-ping. Effects of hydrostatic pressure on pulsed discharge and deep-towed seismic source. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.027        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1395

[1] 孙冰. 液相放电等离子体及其应用[M]. 北京: 科学出版社, 2013.
[2] 尤特金. 液电效应[M]. 北京: 科学出版社, 1962.
[3] RIM G H, CHO C H, LEE H S, et al. An electric-blast system for rock fragmentation [C]∥Pulsed Power Conference,12th IEEE International. Monterey: IEEE, 1999: 165-168.
[4] MIZUNO A, HORI Y. Destruction of living cells by pulsed high-voltage application [J]. IEEE Transactions on Applications, 1988, 24(3): 387-394.
[5] Katsuki S, Moreira K, Dobbs F, et al. Bacterial decontamination with nanosecond pulsed electric fields[J]. Power Modulator Symposium, 1994, Conference Record of the 1994 21st International, 2002:648-651.
[6] BREJCHAR J. Electro-hydraulic forming apparatus: U.S. Patent 3,358,487 [P]. 1967-12-19.
[7] 张雷, 邓琦林. 液电效应除垢机理分析与试验研究[J]. 大连理工大学学报, 1998, 38(2): 207211.
ZHANG Lei, DENG Qi-lin. Experimental study of shock wave effect of electrical discharge under water in filth cleaning [J]. Journal of Dalian University of Technology, 1998, 38(2): 207-211.
[8] HAMELIN M, KITZINGER F, PRONKO S, et al. Hard rock fragmentation with pulsed power [C]∥Pulsed Power Conference. Albuquerque: IEEE, 1993: 11.
[9] HAWRYLEWICZ B M, PUCHALA R J. Experiment with electric discharge in rock splitting [C]∥The 27th US Symposium on Rock Mechanics (USRMS).Tuscaloosa: American Rock Mechanics Association, 1986.
[10] SUN Y H, ZHOU Y X, JIN M J, et al. New prototype of underwater sound source based on the pulsed corona discharge [J]. Journal of electrostatics, 2005, 63(6): 969975.
[11] 严辉, 黄逸凡, 裴彦良, 等. 等离子体震源及在海洋勘探中的应用[J]. 高电压技术, 2012, 38(7): 1711-1718.
YAN Hui, HUANG Yi-fan, PEI Yan-liang, et al. Plasma seismic source and its application in oceanic seismic exploration [J]. High Voltage Engineering, 2012, 38(7): 1711-1718.
[12] AKIYAMA H. Streamer discharges in liquids and their applications [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 646-653.
[13] BEROUAL A, BEDOUI N K. Influence of hydrostatic pressure on the characteristics of discharges propagating on solid/liquid insulating interfaces under AC and DC voltages [C]∥ Proceedings of 2002 IEEE 14th International Conference on Dielectric Liquids.Austria: IEEE, 2002: 207-210.
[14] BEROUAL A, KEBBABI L. Influence of the voltage waveform and hydrostatic pressure on morphology and final length of discharges propagating over solid-liquid interfaces [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(6): 1574-1581.
[15] NOUZE H, SIBUET JC, SAVOYE B, et al. Pasisar: performances of a high and very high resolution hybrid deep-towed seismic device [J]. Marine Geophysical Researches, 1998, 19(5): 379-395.
[16] GETTRUST J F, ROSS J H. Development of a low-frequency, deep-towed geoacoustics system [C]∥OCEANS’90. Washington: IEEE, 1990: 38-40.
[17] WOOD W T, GETTRUST J F. New developments in deep-towed seismic acquisition [C]∥OCEANS'02 MTS/IEEE. Biloxi: IEEE, 2002: 1139-1142.
[18] KER S, LE GALL Y, MARSSET T, et al. SYSIF, a low frequency seismic profiler for near bottom marine geophysics [C]∥70th EAGE Conference and Exhibition. Rome: EAGE, 2008.
[19] LEON P, KER S, LE GALL Y, et al. SYSIF a new seismic tool for near bottom very High resolution profiling in deep water [C]∥OCEANS 2009-EUROPE. Bremen: IEEE, 2009: 15.
[20] 章志成, 裴彦良, 刘振, 等. 高压短脉冲作用下岩石击穿特性的实验研究[J]. 高电压技术, 2012, 38(007): 1719-1725.
ZHANG Zhi-cheng, PEI Yan-liang, LIU Zhen, et al. Experimental research on rock breakdown under short high-voltage pulse [J]. High Voltage Engineering, 2012, 38(007): 1719-1725.
[21] JONES H M, KUNHARDT E E. The influence of pressure and conductivity on the pulsed breakdown of water [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(6): 1016-1025.
[22] BUOGO S, VOKURKA K. Intensity of oscillation of spark-generated bubbles [J]. Journal of Sound and Vibration, 2010, 329(20): 4266-4278.
[23] FONG S W, ADHIKARI D, KLASEBOER E, et al. Interactions of multiple spark-generated bubbles with phase differences [J]. Experiments in Fluids, 2009, 46(4): 705-724.

[1] 沈欣军,王仕龙,韩平,郑钦臻,曾宇翾,闫克平. 电除尘器内亚微米细颗粒物动态的可视化测试[J]. 浙江大学学报(工学版), 2015, 49(5): 985-992.
[2] 寇艳芹, 郑超, 徐羽贞, 黄逸凡, 刘振, 闫克平. 低场强脉冲电场杀灭水中大肠杆菌的实验研究[J]. 浙江大学学报(工学版), 2015, 49(4): 806-812.
[3] 沈欣军,王仕龙,韩平,郑钦臻,曾宇翾,闫克平. 电除尘器内亚微米细颗粒物动态的可视化测试[J]. 浙江大学学报(工学版), 2014, 48(12): 1-8.
[4] 寇艳芹, 郑超, 徐羽贞, 黄逸凡, 刘振, 闫克平. 低场强脉冲电场杀灭水中大肠杆菌的实验研究[J]. 浙江大学学报(工学版), 2014, 48(11): 3-4.
[5] 郑超,徐羽贞,黄逸凡,刘振,闫克平. 脉冲等离子体射流杀灭表面和水中的细菌[J]. 浙江大学学报(工学版), 2014, 48(7): 1329-1335.
[6] 沈雪亮, 范永仙, 汪钊. 外循环气升式生物反应器中酯酶生产及应用[J]. J4, 2010, 44(2): 320-325.