Please wait a minute...
浙江大学学报(工学版)
化学工程     
加氢站高压氢气泄漏爆炸事故模拟及分析
李静媛, 赵永志, 郑津洋
浙江大学 化工机械研究所,浙江 杭州 310027
Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station
LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang
Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China
 全文: PDF(2025 KB)   HTML
摘要:

运用基于计算流体动力学的FLACS软件模拟上海世博加氢站内高压储氢气瓶发生泄漏并引发爆炸的情况,研究不同环境风速对高压氢气泄漏爆炸事故的影响规律.结果表明:基于FLACS的模拟方法,能够实现高压氢气泄漏爆炸事故全过程的模拟,对爆炸超压波进行实时的三维展示;爆炸强度随障碍区域拥塞度和环境风速的增大而显著增强,危害距离随环境风速的增大呈先减小后增大的趋势.对比危害距离模拟值与经验公式计算值可以发现,计算值略高于模拟结果,经验公式偏保守.

Abstract:

FLACS software based on computational fluid dynamics approach was used for simulation and analysis on the leakage and explosion of high pressure hydrogen storage cylinder in the Shanghai World Expo hydrogen refueling station. The effect of wind speed was analyzed. The whole process of leakage and explosion accident was successfully simulated by FLACS, and the real time three-dimensional display of over-pressure wave was given. Results showed that the explosion intension significantly increased when congestion of obstacle region and wind speed increased. Hazard distance first decreased and then increased when the wind speed increased. The calculation value of hazard distance obtained by empirical formula was slightly higher than the simulation results.

出版日期: 2015-09-10
:  TU 411  
基金资助:

国家”863”高技术研究发展计划资助项目(2012AA051504);国家自然科学基金资助项目(51206145)

通讯作者: 赵永志, 男, 副教授     E-mail: yzzhao@zju.edu.cn
作者简介: 李静媛(1990-), 女, 硕士生, 从事氢安全的研究. E-mail:li101590@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2015.07.026.

LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2015.07.026.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2015.07.026        http://www.zjujournals.com/eng/CN/Y2015/V49/I7/1389

[1]郑津洋, 李静媛, 黄强华, 等. 车用高压燃料气瓶技术发展趋势和我国面临的挑战 [J]. 压力容器, 2014, 31(2): 43-50.
ZHENG Jin-yang, LI Jing-yuan, HUANG Qiang-hua, et al. Technology trends of high pressure vehicle fuel tanks and challenges for china [J]. Pressure Vessel, 2014, 31(2): 43-50.
[2]Ludwig-Blkow-Systemtechnik GmbH. Hydrogen filling stations worldwide [EB/OL]. 2014-06-16.http:∥ www.h2stations.org.
[3]冯文, 王淑娟, 倪维斗, 等. 氢能的安全性和燃料电池汽车的氢安全问题 [J]. 太阳能学报, 2003, 24(5): 677-681.
FENG Wen, WANG Shu-juan, NI Wei-dou, et al. The safety of hydrogen energy and fuel cell vehicles [J]. Journal of Solar Energy, 2003, 24(5): 677-681.
[4]张方敏, 徐冰, 尹新, 等. 氯化氢事故泄漏扩散的后果模拟分析 [J]. 安全与环境学报, 2011, 11(4): 193-196.
ZHANG Fang-min, XU Bing, YIN Xin, et al. Simulation analysis on accident consequence of hydrogen chloride leakage and dispersion [J]. Journal of Safety and Environment, 2011, 11(4): 193-196.
[5]KIM E, PARK J, CHO J H, et al. Simulation of hydrogen leak and explosion for the safety design of hydrogen fueling station in Korea [J]. International Journal of Hydrogen Energy, 2013, 38 (3): 1737-1743.
[6]MIDDHA P, HANSEN O R, GROETHE M, et al. Hydrogen explosion study in a confined tube: FLACS CFD simulations and experiments [C]∥ Proceedings of the 21st International Colloquium of Dynamics of Explosions and Reactive Systems.Poitou: University of Poitiers, 2007.
[7]PRANKUL M, OLAV R H. Using computational fluid dynamics as a tool for hydrogen safety studies [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 295-302.
[8]LI Zhi-yong, PAN Xiang-min, MA Jian-xin. Quantitative risk assessment on 2010 Expo hydrogen station [J]. International Journal of Hydrogen Energy, 2011, 36(6): 4079-4086.
[9]MOLKOV V. Fundamentals of hydrogen safety engineering [M]. London: Ventus Publishing ApS, 2012.
[10]MOLKOV V, MAKAROV D, BRAGIN M. Physics and modelling of under-expanded jets and hydrogen dispersion in atmosphere [J]. Physics of Extreme State of Matter, 2009, 11(6): 143-145.
[11]KENNETH K. Principles of combustion [M]. New York: Wiley, 2005.
[12]赵文芳. 化学品事故应急响应中危害距离的确定 [J]. 中国安全生产科学技术, 2009, 5(4): 171-174.
ZHAO Wen-fang. Determination of hazard distance in the chemicals accidents emergency [J]. Journal of Safety Science and Technology, 2009, 5(4): 171-174.
[13]IGO Doc 75/07/E/rev, Determination of safety distances [S]. [S.l.]: European Industrial Gases Association, 2007.
[14]刘诗飞, 詹予忠. 重大危险源辨识及危害后果分析[M]. 北京:化学工业出版社, 2004: 94-96.
[15]李志勇, 潘相敏, 马建新. 加氢站氢气事故后果量化评价 [J]. 同济大学学报:自然科学版, 2012, 40(2): 286-291.
LI Zhi-yong, PAN Xiang-min, MA Jian-xin. Quantitative assessment on hydrogen releases of hydrogen refueling station by consequence modeling [J]. Journal of Tongji University: Natural Science, 2012, 40(2): 286-291.

[1] 焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2128-2134.
[2] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[3] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[4] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[5] 曾兴, 詹良通, 钟孝乐, 陈云敏. 低渗透黏土中氯离子弥散作用离心模拟相似性[J]. 浙江大学学报(工学版), 2016, 50(2): 241-249.
[6] 郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 8-15.
[7] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[8] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[9] 钟孝乐,詹良通,龚标,曾兴,陈云敏. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1947-1954.
[10] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[11] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[12] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[14] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.
[15] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.