Please wait a minute...
浙江大学学报(工学版)
土木工程     
基于响应面法的杭州海相软土固化强度模型
徐日庆1,畅帅1,俞元洪2,陆建阳1
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058;2. 浙江围海建设集团股份有限公司,浙江 宁波 315040
Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou
XU Ri-qing1, CHANG Shuai1, YU Yuan-hong2, LU Jian-yang1
1.Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, 310058, China; 2.Zhejiang Reclaim Construction Group Co., LTD., Zhejiang,Ningbo, 315040,China.
 全文: PDF(642 KB)   HTML
摘要:

为了综合考察土初始含水量、土有机质含量、水泥掺量比及固化剂CX-13掺量对固化效果的影响,对不同土体提出固化方案,以有机质含量、初始含水量、水泥掺量、CX-13掺量作为4个自变量,以固化土28 d无侧限抗压强度作为响应值,采用旋转中心组合设计安排试验.利用响应面法对试验结果进行回归分析,建立各自变量与强度响应间的量化模型.考察各自变量间的交互作用关系,并从机理上对各交互关系进行探讨.结果表明:固定初始含水量与CX-13掺量,强度响应峰值对应的有机质含量随水泥掺量的增大而减小;固定有机质含量与CX-13掺量,强度响应峰值对应的初始含水量随水泥掺量的增大而增大;固定有机质含量与初始含水量,水泥的最佳掺量与CX-13掺量呈正相关关系.

Abstract:

In order to consider comprehensively the influence of initial water content, organic matter content, mixing ratios of cement and CX-13 agent on solidification, and further propose solidification schemes for different soils pertinently, response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed for experiment arrangement, in which response values were unconfined compressive strength of 28 days andindependent variables were initial water content, organic matter content, mixing ratios of cement and CX-13. By regression analysis of test results, a quantitative model between independent variables and response values was constructed, mutual-influences of independent variables were analyzed, and mechanism of mutual-influences was explored. The result shows thatorganic matter content corresponding to the peak value of strength reduces with the increase of cement mixing ratiowhileinitial water content and CX-13 mixing ratioarefixed,initial water content corresponding to the peak value of strength grows with the increase of cement mixing ratiowhileorganic matter content and CX-13 mixing ratioare fixed. The optimal cement mixing ratio is positively related with CX-13 content once organic matter content and initial water content are fixed.

出版日期: 2014-11-01
:  TU 411  
基金资助:

国家自然科学基金资助项目(51178420)

作者简介: 徐日庆(1962- ),男,教授,博导.主要从事软土地基处理方面的研究.E-mail: xurq@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.11.005.

XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.11.005.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.11.005        http://www.zjujournals.com/eng/CN/Y2014/V48/I11/1941

[1]李雪刚, 徐日庆, 王兴陈, 等. 杭州地区海、湖相软土的工程特性评价[J]. 浙江大学学报:工学版, 2013, 47(8): 1346-1352.
LI Xue-gang, XU Ri-qing, WANG Xing-chen, et al. Assessment of engineering properties for marine and lacustrine soft soil in Hangzhou[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(8): 1346-1352.
[2]刘顺妮, 林宗寿, 陈云波. 高含水量黏土固化剂的研究[J]. 岩土工程学报, 1998, 20(4): 72-75.
LIU Shun-ni, LIN Zong-shou, CHEN Yun-bo. On the stabilizer for the soil with higher water content [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 72-75.
[3]汤怡新, 刘汉龙, 朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554.
TANG yi-xin, LIU Han-long, ZHU Wei. Study on engineering properties of cement-stabilized soil [J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554.
[4]荀勇. 有机质含量对水泥土强度的影响与对策[J]. 四川建筑科学研究, 2000, 26(3): 58-60.
XUN Yong. The anti-influences and influences of soil containing organic matter on cement soil strength[J]. Building Science of Sichuan, 2000, 26(3): 58-60.
[5]范昭平, 朱伟, 张春雷. 有机质含量对淤泥固化效果影响的试验研究[J]. 岩土力学, 2005, 26(8): 1327-1334.
FAN Zhao-ping, ZHU Wei, ZHANG Chun-lei. Experimental study on influence of organic matter content on solidified dredging\[J\]. Rock and Soil Mechanics, 2005, 26(8): 1327-1334.
[6]储诚富, 邵俐, 刘松玉, 等. 有机质含量对水泥土强度影响的室内定量研究[J]. 岩土力学, 2006, 27(9): 1613-1616.
CHU Chen-fu, SHAO Li, LIU Song-yu, et al. Laboratory study quantitatively on effect of organic content on strength of cement-mixed clays [J]. Rock and Soil Mechanics, 2006, 27(9): 1613-1616.
[7] 王立峰, 翟惠云. 纳米硅水泥土抗压强度的正交试验和多元线性回归分系[J]. 岩土工程学报, 2010, 32(s1): 452457.
WANG Li-feng, ZHAI Hui-yun. Orthogonal test and regression analysis of compressive strength of nanometer silicon and cement-stabilized soils [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(s1): 452-457.
[8] 郭印, 徐日庆, 邵允铖. 淤泥质土的固化机理研究[J]. 浙江大学学报:工学版, 2008, 42(6): 1071-1075.
GUO Yin, XU Ri-qing, SHAO Yun-cheng. Study on mechanism of muddy soil stabilization[J]. Journal of Zhejiang University:Engineering Science, 2008, 42(6): 1071-1075.
[9] TABARAKI R, NATEGHI A. Optimization of ultrasonic- assisted extraction of natural antioxidants from rice bran using response surface methodology [J]. Ultrasonics Sonochemistry, 2011, 18(6): 1279-1286.
[10] TAN I A W, AHMAD A L, HAMEED B H. Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology[J]. Chemical Engineering Journal, 2008, 137(3): 462-470.
[11] LAY J J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering, 2000, 68(3): 269-278.
[12] KHOUNI I, MARROT B, MOULIN P, et al. Decolouriza- tion of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes [J]. Desalination, 2011, 268(1/3): 27-37.
[13] ASLAN N. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration [J]. Powder Technology, 2008, 185(1): 80-86.
[14] YCEL Y. Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology[J]. Fuel Processing Technology, 2012, 99(7): 97-102.
[15] 杨爱武, 杜东菊, 赵瑞斌, 等. 水泥及其外加剂固化天津海积软土的试验研究[J]. 岩土力学, 2007, 28(9): 1823-1827.
YANG Ai-wu, DU Dong-ju, ZHAO Rui-bin, et al. Experimental study on cement and its additional agent to cure Tianjin marine soft soil [J]. Rock and Soil Mechanics, 2007, 28(9): 1823-1827.

[1] 焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2128-2134.
[2] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[3] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[4] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[5] 曾兴, 詹良通, 钟孝乐, 陈云敏. 低渗透黏土中氯离子弥散作用离心模拟相似性[J]. 浙江大学学报(工学版), 2016, 50(2): 241-249.
[6] 郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 8-15.
[7] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[8] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[9] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[10] 钟孝乐,詹良通,龚标,曾兴,陈云敏. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1947-1954.
[11] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[12] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[14] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.
[15] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.