Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
低渗透黏土中氯离子弥散作用离心模拟相似性
曾兴1,2, 詹良通1, 钟孝乐3, 陈云敏1
1.浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058; 2.湖南科技大学 土木工程学院,湖南 湘潭 411201;3.中建安装工程有限公司,江苏 南京 210000
Similarity of centrifuge modeling of chloride dispersion in low permeability clay
ZENG Xing1,2, ZHAN Liang tong1, ZHONG xiao le3, CHEN Yun min1
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, hejiangUniversity, Hangzhou 310058, China;2.School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201,China;3. China Construction Installation Engineering Company Limited, Nanjing 210000,China
 全文: PDF(1205 KB)   HTML
摘要:

针对低渗透黏土中弥散作用离心模拟的相似性问题,以高岭土和氯离子为材料,开展高岭土重塑试样的纯扩散试验,获得氯离子有效扩散系数与孔隙比的关系;在常重力(1g)和超重力(25g~50g)环境下开展不同流速的土柱试验,得到水动力弥散系数与分子扩散系数的比值与Péclet数(Pe)的关系.试验结果分析表明:当Pe基于弥散度定义时,可沿用目前的标准(即Pe=1)判别高岭土中弥散作用的相似性;当Pe基于平均粒径定义时,判别高岭土中弥散作用相似性的临界Pe远小于1.当离心机模拟氯离子击穿2 m厚黏土衬垫时,对于填埋场可能遭遇水头差(0~40 m),当离心机加速度不高于100g时,击穿时间模拟误差不超过24%.

Abstract:
Kaolin clay and chloride were selected as testing materials for the experimental study on the similitude of dispersion in low permeability clay between centrifuge model and real prototype. Diffusion tests were firstly conducted to determine the relationship between the coefficient of effective diffusion and the void ratio. Then, soil column tests with different values of advection velocity were conducted at 1g and under centrifuge conditions (25g-50g) to obtain the relationship between the coefficient of hydrodynamic dispersion relative to free solution diffusion and Peclet number (Pe). Based on the experimental results, it is found that when Pe is defined based on dispersivity, the previously reported critical Péclet number (Pe=1) can be used for judging similitude of centrifuge modeling ofdispersion in the Kaolin clay. When Pe is defined based on the mean particle size of the clay, the critical Péclet number is much less than 1. When the transport of non reactive pollutant in a 2 m thick low permeability clay liner being subject to a hydraulic head less than 40 mis concerned, the difference between centrifuge modeling with an accelerationless than 100g and real prototype is less than 24%.
出版日期: 2016-02-01
:  TU 411  
基金资助:

国家自然科学基金资助项目(51378466);国家“863”高技术研究发展计划资助项目(2012AA062601).

通讯作者: 詹良通(1972— ),男,教授,博导.ORCID: 0000 0002 4483 6737.     E-mail: zhanlt@zju.edu.cn
作者简介: 曾兴(1987—),男,博士,主要从事环境岩土工程相关方面研究.ORCID: 0000 0003 1439 3442. E-mail: xzeng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

曾兴, 詹良通, 钟孝乐, 陈云敏. 低渗透黏土中氯离子弥散作用离心模拟相似性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.007.

ZENG Xing, ZHAN Liang tong, ZHONG xiao le, CHEN Yun min. Similarity of centrifuge modeling of chloride dispersion in low permeability clay. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.007        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/241

[1] ARULANANDAN K, THOMPSON P Y, KUTTER B L, et al. Centrifuge modeling of transport processes for pollutants in soils [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(2): 185-205.
[2] HENSLEY P J, SCHOFIELD A N. Accelerated physical modelling of hazardous waste transport [J]. Geotechnique, 1991, 41(3): 447-465.
[3] LO I M C, ZHANG J, HU L. Centrifuge modeling of cadmium migration in saturated and unsaturated soils [J]. Soil & Sediment Contamination, 2005, 14(5): 417-431.
[4] 蔡红.污染物在低渗透性土体中迁移的离心模型试验研究[D].北京:中国农业大学, 2007.
CAI Hong. Centrifuge modeling of pollutant migration in low permeability soil[D]. Beijing: China Agricultural University, 2007.
[5] ZHANG J, LO I M C. Centrifuge study of long term transport behavior and fate of copper in soils at various saturation of water, compaction and clay content[J]. Soil & Sediment Contamination, 2008, 17(3): 237255.
[6] KUMAR R P, SINGH D N. Geotechnical centrifuge modeling of chloride diffusion through soils[J]. International Journal of Geomechanics, 2012, 12(3), 327-332.
[7] TAYLOR R N. Geotechnical centrifuge technology[M]. Glasgow: Blackie Academic and Professional, 1995,211-213.
[8] CELORIE J A, VINSON T S, Woods S L, et al. Modeling solute transport by centrifugation[J].Journal of Environmental Engineering, 1989, 115(3): 513-526.
[9] NAKAJIMA H, HIROOKA A, TAKEMURA J, et al. Centrifuge modeling of one dimensional subsurface contamination [J]. Journal of the American Water Resources Association, 1998, 34( 6): 1415-1425.
[10] GURUNG SB, ALMEIDA MSS, BICALHO KV. Migration of zinc through sedimentary soil models[C]∥ Centrifuge 98. Tokyo: [s.n.], 1998, 1: 589-594.
[11] SAFFMAN P G. A theory of dispersion in a porous medium [J]. Journal of Fluid Mechanics, 1959, 6(3): 321-349.
[12] SAFFMAN P G. Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries[J]. Journal of Fluid Mechanics, 1960, 7(2): 194-208.
[13] BACHMAT Y. On the similitude of dispersion phenomena in homogeneous and isotropic porous mediums [J]. Water Resources Research, 1967, 3 (4 ): 1079-1083.
[14] BEAR J, VERRUIIT A. Modeling groundwater flow and pollution[M]. Dordrecht, Holland: Reidelx, 1987: 161-167.
[15] HENSLEY P J, RANDOLPH M F. Modelling contaminant disPersion in saturated sand[C]∥Proceedings of the International Conference on Soil Mechanics and Foundation Engineering International Society for Soil Mechanisc and Mechanics and Foundation Engineering. New Delhi: BalkemA, 1994, 4: 1557-1557.
[16] TIMMS W A, HENDRY M J. Long term reactive solute transport in an aquitard ssing a centrifuge mode[J]. Ground Water, 2008, 46(4): 616628.
[17] MCKINLEY J D, PRICE A, LYNCH R J, et al. Centrifuge modelling of the transport of a pulse of two contaminants[J]. Geotechnique, 1998, 48(3): 421-425.
[18] 钟孝乐.重金属在高岭土中对流 弥散参数的测试研究[D].杭州:浙江大学,2013: 27-35.
ZHONG Xiao le. Study on the testing of convection diffusion parameters of heavy metals in kaolin clay[D]. Hangzhou: Zhejiang University, 2013: 27-35.
[19] 陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价[J].岩土工程学报,2011,33(12): 1887-1894.
CHEN Yun min, HAN Chao, LING Dao sheng et al.Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system [J]. Chinese Journal of Geotechnical Engineering, 2011,33(12): 1887-1894.
[20] CRANK J. The mathematics of diffusion[M].2ed.New York: Clarendon Press, 1975: 4-7.
[21] SHARMA H D, REDDY K R. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M].New York: HarperCollins UK, 2004, 170-172.
[22] 詹良通,曾兴,李育超,等.高水头条件下氯离子击穿高岭土衬垫的离心模型试验研究[J].长江科学院院报,2012, 29(2): 83-89.
ZHAN Liang tong, ZENG Xing, LI Yu chao, et al. Centrifuge modeling for breakthrough of chloride in a Kaolin clay liner subject to a high hydraulic head[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(2): 83-89.
[23] VAN GENUCHTEN M T, PARKER J C. Boundary conditions for displacement experiments through short laboratory soil columns [J]. Soil Science Society of America Journal. 1984, 48(4): 703-708.
[24] PARKER J C, VAN GENUCHTEN M T. Flux averaged and volume averaged concentrations in continuum approaches to solute transport [J]. Water Resources Research, 1984, 20(7), 866-872.
[25] SHACKELFORD C D. Critical concepts for column testing [J]. Journal of Geotechnical Engineering, 1994, 120(10): 1804-1828.
[26] 郑春苗,贝内特,孙晋玉,等.地下水污染物迁移模拟[M].北京:高等教育出版社, 2009: 37.
[27] CJJ 17 2004.生活垃圾卫生填埋技术规范[S]. 北京:中国建筑工业出版社, 2004.
CJJ 17 2004. Technical code for municipal solid waste sanitary landfill[S]. Beijin: China Architecture & Building Press, 2004.

[1] 焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2128-2134.
[2] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[3] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[4] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[5] 郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版), 2016, 50(1): 8-15.
[6] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[7] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[8] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[9] 钟孝乐,詹良通,龚标,曾兴,陈云敏. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1947-1954.
[10] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[11] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[12] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[14] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.
[15] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.