能源工程 |
|
|
|
|
基于样本优选的集成学习在脱硫优化中的应用 |
葛志辉(),邢江宽,罗坤*(),樊建人 |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Application of ensemble learning based on preferred sample selection in desulfurization optimization process |
Zhi-hui GE(),Jiang-kuan XING,Kun LUO*(),Jian-ren FAN |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
引用本文:
葛志辉,邢江宽,罗坤,樊建人. 基于样本优选的集成学习在脱硫优化中的应用[J]. 浙江大学学报(工学版), 2021, 55(8): 1566-1575.
Zhi-hui GE,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Application of ensemble learning based on preferred sample selection in desulfurization optimization process. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1566-1575.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.08.018
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I8/1566
|
1 |
中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019.
|
2 |
BARMA M C, SAIDUR R, RAHMAN S M, et al A review on boilers energy use, energy savings, and emissions reductions[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 970- 983
doi: 10.1016/j.rser.2017.05.187
|
3 |
赵顺毅, 陈子豪, 张瑾, 等 现代流程工业的机器学习建模[J]. 自动化仪表, 2019, 40 (9): 1- 7 ZHAO Shun-yi, CHEN Zi-hao, ZHANG Jin, et al Modeling based on machine learning for modern process industry[J]. Process Automation Instrumentation, 2019, 40 (9): 1- 7
|
4 |
向鸿鑫, 杨云 不平衡数据挖掘方法综述[J]. 计算机工程与应用, 2019, 55 (4): 1- 16 XIANG Hong-xin, YANG Yun Survey on imbalanced data mining methods[J]. Computer Engineering and Applications, 2019, 55 (4): 1- 16
|
5 |
张洋. SMOTE算法的改进与应用[D]. 重庆: 重庆大学, 2019. ZHANG Yang. Improvement and application of SMOTE algorithm[D]. Chongqing: Chongqing University, 2019.
|
6 |
LIN W, TSAI C, HU Y, et al Clustering-based undersampling in class-imbalanced data[J]. Information Sciences, 2017, 409: 17- 26
|
7 |
SEIFFERT C, KHOSHGOFTAAR T M, VAN H J, et al Rusboost: a hybrid approach to alleviating class imbalance[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2009, 40 (1): 185- 197
|
8 |
RAYHAN F, AHMED S, MAHBUB A, et al. Cusboost: cluster-based under-sampling with boosting for imbalanced classification[C]// 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution. Bangalore: IEEE, 2017: 70-75.
|
9 |
WANG R AdaBoost for feature selection, classification and its relation with SVM, a review[J]. Physics Procedia, 2012, 25: 800- 807
doi: 10.1016/j.phpro.2012.03.160
|
10 |
丁伟. 基于数据聚类的机组优化运行目标值研究[D]. 南京: 东南大学, 2019. DING Wei. Research on target value of unit optimal operation based on data clustering[D]. Nanjing: Southeast University, 2019.
|
11 |
刘晓洋. 风速预测中数椐和样本的有效处理及其模型优化研究[D]. 太原: 太原理工大学, 2016. LIU Xiao-yang. Research on effective processing of data and samples of wind speed forecasting and its model optimization [D]. Taiyuan: Taiyuan University of Technology, 2016.
|
12 |
RANA M, RAHMAN A Multiple steps ahead solar photovoltaic power forecasting based on univariate machine learning models and data re-sampling[J]. Sustainable Energy, 2020, 21: 100286
|
13 |
纪雪, 周兴华, 唐秋华, 等 多波束测深异常数据检测与剔除方法研究综述[J]. 测绘科学, 2018, 43 (1): 38- 44 JI Xue, ZHOU Xing-hua, TANG Qiu-hua, et al A survey offiltering methods in multibeam bathymetry outliers data[J]. Science of Surveying and Mapping, 2018, 43 (1): 38- 44
|
14 |
刘吉臻, 高萌, 吕游, 等 过程运行数据的稳态检测方法综述[J]. 仪器仪表学报, 2013, 34 (8): 1739- 1748 LIU Ji-zhen, GAO Meng, LV You, et al Overview on the steady-state detection methods of process operating data[J]. Chinese Journal of Scientific Instrument, 2013, 34 (8): 1739- 1748
doi: 10.3969/j.issn.0254-3087.2013.08.009
|
15 |
CAO S, RHINEHART R R An efficient method for on-line identification of steady state[J]. Journal of Process Control, 1995, 5 (6): 363- 374
doi: 10.1016/0959-1524(95)00009-F
|
16 |
CAO S, RHINEHART R R Critical values for a steady-state identifier[J]. Journal of Process Control, 1997, 7 (2): 149- 152
doi: 10.1016/S0959-1524(96)00026-1
|
17 |
金建国 聚类方法综述[J]. 计算机科学, 2014, 41 (Suppl. 2): 288- 293 JIN Jian-guo Review of clustering method[J]. Computer Science, 2014, 41 (Suppl. 2): 288- 293
|
18 |
高新. 一种改进K-means聚类算法与新的聚类有效性指标研究[D]. 合肥: 安徽大学, 2020. GAO Xin. Research on improved K-means algorithm and new cluster validity index[D]. Hefei: Anhui University, 2020.
|
19 |
BELGIU M, DRAGUT L Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24- 31
doi: 10.1016/j.isprsjprs.2016.01.011
|
20 |
胡蕊. 燃煤电厂湿法脱硫塔能效评价研究[D]. 济南: 山东大学, 2020. HU Rui. Study on energy efficiency evaluation of wet flue gas desulphurization tower in coal-fired power plant[D]. Jinan: Shandong University, 2020.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|