Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (6): 1150-1156    DOI: 10.3785/j.issn.1008-973X.2018.06.014
土木与交通工程     
采用递归有序聚类的信号控制时段划分方法
李文婧1, 孙锋2, 李茜瑶3, 马东方1
1. 浙江大学 海洋学院, 浙江杭州 310058;
2. 山东理工大学 交通与汽车工程学院, 山东 淄博 255000;
3. 大连理工大学 交通运输工程学院, 辽宁 大连 116024
Time-of-day breakpoints for traffic signal control using dynamic recurrence order clustering
LI Wen-jing1, SUN Feng2, LI Xi-yao3, MA Dong-fang1
1. Ocean College, Zhejiang University, Hangzhou 310058, China;
2. College of Transportation and Automotive Engineering, Shandong University of Technology, Zibo 255000, China;
3. College of Communication and Transportation Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(2243 KB)   HTML
摘要:

为了弥补传统聚类思想下的信号控制时段划分算法忽略了交通流量序列的时间特性的缺点,引入有序聚类建立智能化的交通控制时段划分方法.针对特定分割数目下的任意一种可能划分方案,用类表示特定时段内部的数据序列集合,以直径为参数测算类内样本差异性,以所有类内直径总和作为指标衡量划分结果损失值及方案优劣性.为了降低传统有序聚类时间复杂度,引入动态递归策略,建立特定分割数目下最佳方案的快速求解方法,通过识别不同分割个数下最小损失值突变点,获取最佳分割数和最优方案.基于该方法得到的最优划分在实际交通规划中对比常用方法,交通运行效率得到了显著提升.

Abstract:

An intelligent partition method for the traffic flow time series data was proposed based on order clustering to compensate for the technical defects of traditional methods which neglect time characteristic of traffic flow for traffic time-of-day (TOD) breakpoints optimization. The parameter of diameter was selected with fixed number of each cluster to measure the difference between any two samples within one cluster. The sum of the diameters was the loss value for this cluster. A fast solution method for seeking the optimal plan among all possible scenarios with known number of cluster was advanced based on dynamic recurrence algorithm in order to reduce the time complexity of the original method. The optimal number of clusters and the TOD plan was determined by identifying the elbow point in the change pattern of the minimum loss values with different numbers of clusters. The optimal partition used in the actual traffic planning can significantly improve the efficiency of traffic operation.

收稿日期: 2017-03-01 出版日期: 2018-06-20
CLC:  U491  
基金资助:

浙江省自然科学基金资助项目(LY17F030009,LY16E080003);国家自然科学基金资助项目(61304191,51338008);浙江省重点科技创新团队资助项目(2013TD09).

通讯作者: 马东方,男,副教授,博士.orcid.org/0000-0002-9334-1570.     E-mail: mdf2004@zju.edu.cn
作者简介: 李文婧(1993-),女,硕士生,从事数据挖掘与智能交通研究.orcid.org/0000-0002-9013-885X.E-mail:21634120@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

李文婧, 孙锋, 李茜瑶, 马东方. 采用递归有序聚类的信号控制时段划分方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1150-1156.

LI Wen-jing, SUN Feng, LI Xi-yao, MA Dong-fang. Time-of-day breakpoints for traffic signal control using dynamic recurrence order clustering. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(6): 1150-1156.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.06.014        http://www.zjujournals.com/eng/CN/Y2018/V52/I6/1150

[1] 赵伟明,王殿海,朱文韬,等.基于改进NJW算法的交通控制时段划分[J].浙江大学学报:工学版,2014,48(12):2259-2265. ZHAO Wei-ming, WANG Dian-hai, ZHU Wen-tao, et al. Optimization of time-of-day breakpoints based on improved NJW algorithm[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(12):2259-2265.
[2] 林培群,卓福庆,姚凯斌,等.车联网环境下交叉口交通流微观控制模型及其求解与仿真[J].中国公路学报,2015,28,(8):82-90. LIN Pei-qun, ZHUO Fu-qing, YAO Kai-bin, et al. Solving and simulation of microcosmic control model of intersection traffic flow in connected-vehicle network environment[J]. China Journal of Highway and Transport, 2015, 28(8):82-90.
[3] SCHMÖCKER J D, AHUJA S, BELL M G H. Multi-objective signal control of urban junctions Framework and a London case study[J]. Transportation Research Part C:Emerging Technologies, 2008, 16(4):454-470.
[4] JEFF B X, HAO P, SUN Z. Real time queue length estimation for signalized intersections using travel times from mobile sensors[J]. Transportation Research Part C:Emerging Technologies, 2011, 19(6):1133-1156.
[5] AHMED M M, ABDEL-ATY M A. The viability ofusing automatic vehicle identification data for real-time crash prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2):459-468.
[6] CEYLAN H, BELL M G H. Traffic signal timing optimization based on genetic algorithm approach, including drivers' routing[J]. Transportation Research Part B:Methodological, 2004, 38(4):329-342.
[7] SMITH B L, SCHERER W T, HAUSER T A, et al. Data-driven methodology for signal timing plan development:a computational approach[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 17(6):387-395.
[8] ABBASM, SHARMAA, JUNGY. Optimization of time of day plan scheduling using a multi-objective evolutionary algorithm[C]//Proceeding of Transportation Research Board Annual Meeting. Washington D.C:Transportation Research Board, 2005.
[9] WANG X, COTTRELL W, MU S. Using K-means clustering to identify time-of-day break points for traffic signal timing plans[C]//2005 IEEE Intelligent Transportation Systems. Vienna:IEEE, 2005:586-591.
[10] RATROUT N T. Subtractive clustering-based k-means technique for determining optimum time-of-day breakpoints[J]. Journal of Computing in Civil Engineering, 2010, 25(5):380-387.
[11] PARK B B, SANTRA P, YUN I, et al. Optimization of time-of-day breakpoints for better traffic signal control[J]. Transportation Research Record:Journal of the Transportation Research Board, 2004(1867):217-223.
[12] PARK B B, LEE D H, YUN I. Enhancement of time of day based traffic signal control[C]//IEEE International Conference on Systems, Man and Cybernetics, 2003. Washington DC:IEEE, 2003:3619-3624.
[13] LEE J, KIM J, PARK B B. A genetic algorithm-based procedure for determining optimal time-of-day break points for coordinated actuated traffic signal systems[J]. KSCE Journal of Civil Engineering, 2011, 15(1):197-203.
[14] MANNION P, DUGGAN J, HOWLEY E. An experimental review of reinforcement learning algorithms for adaptive traffic signal control[M]//Autonomic road transport support systems. Switzerland:Springer, 2016:47-66.
[15] NIELSEN F, NOCK R. Optimal interval clustering:application to Bregman clustering and statistical mixture learning[J]. IEEE Signal Processing Letters, 2014, 21(10):1289-1292.
[16] 金盛,徐程,王殿海.城市路网交叉口检测器均衡布设优化方法[J].浙江大学学报:工学版,2013,47(03):515-521. JIN Sheng, XU Cheng, WANG Dian-hai. Optimal traffic detector locations for equal distribution at urban network intersections[J]. Journal of Zhejiang University:Engineering Science,2013,47(03):515-521.
[17] 杨晓光,蒲文静,龙亮.基于交通冲突分析的交叉口机动车信号灯设置[J].同济大学学报:自然科学版,2005,33(12):1596-1599. YANG Xiao-guang, PU Wen-jing, LONG Liang. Traffic signal warrant study based on traffic conflict analysis for uncontrolled intersections[J]. Journal of Tongji University:Natural Science,2005,33(12):1596-1599.
[18] MA D F, LUO X, LI W J, et al. Traffic demand estimation for lane groups at signal-controlled intersectionsusing travel times from video-imaging detectors[J]. IET Intelligent Transport Systems, 2017, 11(4):222-229.

[1] 张帅超, 朱谊, 陈喜群. 基于移动检测数据的宏观基本图特征[J]. 浙江大学学报(工学版), 2018, 52(7): 1338-1344.
[2] 阮树斌, 王福建, 马东方, 金盛, 王殿海. 基于车牌识别数据的机动车出行轨迹提取算法[J]. 浙江大学学报(工学版), 2018, 52(5): 836-844.
[3] 梅振宇, 章伟. 基于复杂性测度的泊位占有率序列动力学分析[J]. 浙江大学学报(工学版), 2018, 52(4): 727-734.
[4] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[5] 曲昭伟, 罗瑞琪, 陈永恒, 曹宁博, 邓晓磊, 汪昆维. 信号交叉口右转机动车轨迹特性[J]. 浙江大学学报(工学版), 2018, 52(2): 341-351.
[6] 曹宁博, 陈永恒, 曲昭伟, 赵利英, 白乔文, 杨秋杰. 基于社会力模型的行人路径选择模型[J]. 浙江大学学报(工学版), 2018, 52(2): 352-357.
[7] 杨庆芳, 赵小辉, 郑黎黎, 张伟. 基于模型预测控制的环形交叉口信号配时方法[J]. 浙江大学学报(工学版), 2018, 52(1): 117-124.
[8] 杨方宜, 李铁柱. 大型综合客运枢纽送站坪交通特性及通行能力[J]. 浙江大学学报(工学版), 2017, 51(11): 2207-2214.
[9] 吴江玲, 张生瑞, Amit Kumar Singh, 秦思, 孙振东. 高速公路强制换道持续时间半参数生存分析[J]. 浙江大学学报(工学版), 2017, 51(11): 2215-2221.
[10] 于德新, 田秀娟, 杨兆升, 周熙阳, 程泽阳. 改进的干线协调信号控制优化模型[J]. 浙江大学学报(工学版), 2017, 51(10): 2019-2029.
[11] 季学斌, 王慧, 宋春跃. 基于元胞自动机的施工场内交通流建模及安全分析[J]. 浙江大学学报(工学版), 2017, 51(10): 2005-2011.
[12] 李显生, 孟凡淞, 郑雪莲, 任园园, 严佳晖. 交通冲突类型对驾驶人生理特性的影响[J]. 浙江大学学报(工学版), 2017, 51(9): 1720-1726.
[13] 王薇, 程泽阳, 刘梦依, 杨兆升. 基于时空相关性的交通流故障数据修复方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1727-1734.
[14] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.
[15] 刘美岐, 沈莉潇, 金盛. 考虑右转信号控制的共用车道通行能力模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1347-1354.