计算机与控制工程 |
|
|
|
|
基于数据融合的ABC-SVM社区疾病预测方法 |
庞维庆1( ),何宁1,*( ),罗燕华2,郁晞3 |
1. 桂林电子科技大学 信息与通信学院,广西 桂林 541004 2. 南宁市第一人民医院,广西 南宁 530000 3. 上海市青浦区疾病预防控制中心,上海 201799 |
|
ABC-SVM disease prediction method based on data fusion in community health care |
Wei-qing PANG1( ),Ning HE1,*( ),Yan-hua LUO2,Xi YU3 |
1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China 2. The First People's Hospital of Nanning, Nanning 530000, China 3. Qingpu District Center for Disease Control and Prevention, Shanghai 201799, China |
引用本文:
庞维庆,何宁,罗燕华,郁晞. 基于数据融合的ABC-SVM社区疾病预测方法[J]. 浙江大学学报(工学版), 2021, 55(7): 1253-1260.
Wei-qing PANG,Ning HE,Yan-hua LUO,Xi YU. ABC-SVM disease prediction method based on data fusion in community health care. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1253-1260.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.004
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1253
|
1 |
JIA M, YU W, ZHAI X, et al Modeling and analysis of first aid command and dispatching system of cloud medical system[J]. IEEE Access, 2019, 7: 168752- 168758
doi: 10.1109/ACCESS.2019.2954451
|
2 |
AHMADI H, ARJI G, SHAHMORADI L, et al The application of internet of things in healthcare: a systematic literature review and classification[J]. Universal Access in the Information Society, 2019, 18 (4): 837- 869
doi: 10.1007/s10209-018-0618-4
|
3 |
王磊, 孟濬 基于wavelet的一类脉搏信号疾病特征量化分析[J]. 浙江大学学报: 工学版, 2012, 46 (10): 1866- 1871 WANG Lei, MENG Jun Quantitative analysis of disease features of a class of pulse signals based on wavelet[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (10): 1866- 1871
|
4 |
KAUR P, KUMAR R, KUMAR M A healthcare monitoring system using random forest and internet of things (IoT)[J]. Multimedia Tools and Applications, 2019, 78 (14): 19905- 19916
doi: 10.1007/s11042-019-7327-8
|
5 |
刘灿, 黄俊, 胡丹, 等 基于慢性病预测的老年人健康监护软件设计与实现[J]. 信息通信, 2019, (2): 93- 96 LIU Can, HUANG Jun, HU Dan, et al Elderly health monitoring software based on chronic disease prediction design and implementation[J]. Information and Communications, 2019, (2): 93- 96
|
6 |
王哲, 李琳, 李丞, 等 基于机器学习方法的慢性阻塞性肺疾病分期预测[J]. 中国数字医学, 2019, 14 (3): 38- 40 WANG Zhe, LI Lin, LI Cheng, et al Stage prediction of chronic obstructive pneumonia based on machine learning[J]. China Digital Medicine, 2019, 14 (3): 38- 40
|
7 |
MOHAN S, THIRUMALAI C, SRIVASTAVA G Effective heart disease prediction using hybrid machine learning techniques[J]. IEEE Access, 2019, 7: 81542- 81554
doi: 10.1109/ACCESS.2019.2923707
|
8 |
CHEN M, HAO Y, HWANG K, et al Disease prediction by machine learning over big data from healthcare communities[J]. IEEE Access, 2017, 5: 8869- 8879
doi: 10.1109/ACCESS.2017.2694446
|
9 |
莫太平, 王彦丽 基于脉象分析的亚健康状态识别[J]. 桂林电子科技大学学报, 2017, 37 (6): 442- 446 MO Tai-ping, WANG Yan-li Sub-health identification based on pulse analysis[J]. Journal of Guilin University of Electronic Technology, 2017, 37 (6): 442- 446
doi: 10.3969/j.issn.1673-808X.2017.06.003
|
10 |
LAPLANTE P A, LAPLANTE N The internet of things in healthcare potential applications and challenges[J]. IT Professional, 2016, 18 (3): 2- 4
doi: 10.1109/MITP.2016.42
|
11 |
TADIĆ L, BONACCI O, BRLEKOVIĆ T An example of principal component analysis application on climate change assessment[J]. Theoretical and Applied Climatology, 2019, 138 (1-2): 1049- 1062
doi: 10.1007/s00704-019-02887-9
|
12 |
HESAMIAN G, AKBARI M G Principal component analysis based on intuitionistic fuzzy random variables[J]. Computational and Applied Mathematics, 2019, 38 (4): 1- 14
doi: 10.1007/s40314-019-0939-9
|
13 |
YU Z, CHEN H, YOU J, et al Adaptive fuzzy consensus clustering framework for clustering analysis of cancer data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12 (4): 887- 901
doi: 10.1109/TCBB.2014.2359433
|
14 |
KANDUKURI S T, SENANYAKA J S L, HUYNH V K, et al A two-stage fault detection and classification scheme for electrical pitch drives in offshore wind farms using support vector machine[J]. IEEE Transactions on Industry Applications, 2019, 55 (5): 5109- 5118
doi: 10.1109/TIA.2019.2924866
|
15 |
GARCÍA NIETO P J, COMBARRO E F, DEL COZ DÍAZ J J, et al A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study[J]. Applied Mathematics and Computation, 2013, 219 (17): 8923- 8937
doi: 10.1016/j.amc.2013.03.018
|
16 |
LU W, WANG W Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends[J]. Chemosphere, 2005, 59 (5): 693- 701
doi: 10.1016/j.chemosphere.2004.10.032
|
17 |
WANG Y, NI Y, LU S, et al Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony[J]. IEEE Transactions on Vehicular Technology, 2019, 68 (10): 9543- 9553
doi: 10.1109/TVT.2019.2932605
|
18 |
YANG D, LIU Y, LI S, et al Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm[J]. Mechanism and Machine Theory, 2015, 90: 219- 229
doi: 10.1016/j.mechmachtheory.2015.03.013
|
19 |
WANG X, XU X, SHENG Q Z, et al Novel artificial bee colony algorithms for QoS-aware service selection[J]. IEEE Transactions on Services Computing, 2019, 12 (2): 247- 261
doi: 10.1109/TSC.2016.2612663
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|