参考文献(References):
[1] 马攀,马增益,陈继华,等. 循环流化床垃圾焚烧炉混烧羊毛脂废料试验研究[J]. 中国电机工程学报,2012,32(8): 6-11.
MA Pan, MA Zeng-yi, CHEN Ji-hua, et al. Experimental study on co-firing of lanolin waste and municipal solid waste in a circulating fluidized bed incinerator [J]. Proceedings of the CSEE, 2012, 32(8): 6-11.
[2] 曹玉林,严建华,李晓东,等. 垃圾与煤流化床混烧及其排放特性[J]. 热力发电,2005, 34(11): 57-63.
CAO Yu-lin, YAN Jian-hua, LI Xiao-dong, et al. Study on co-firing of coal and MSW and emission performance in a circulating fluidized bed incinerator [J]. Thermal Power Generation, 2005, 34(11): 57-63.
[3] 中国环境保护产业协会城市生活垃圾处理专业委员会. 城市生活垃圾处理行业2014年发展综述[J]. 中国环保产业,2015, 11:17-24.
Specialized Committee of Urban Domestic Refuse of CAEPI. Development report on China treatment industry of urban domestic refuse in 2013 [J]. China Environmental Protection Industry, 2015, 11: 17-24.
[4] ZHOU H, MENGA, LONG Y, et al. An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value [J]. Renewable and Sustainable Energy Reviews, 2014, 36: 107-122.
[5] LIUKKONEN M, HILTUNEN T, HLIKK E, et al. Modeling of the fluidized bed combustion process and NOx emissions using selforganizing maps: an application to the diagnosis of process states [J]. Environmental Modelling and Software, 2011, 26(5): 605-614.
[6] 沈凯. 垃圾焚烧炉自适应控制策略及热值监测模型研究[D].武汉:华中科技大学,2005: 77-79.
SHEN Kai. Study on the adaptive control strategy of incinerators and the monitoring model of heating values [D]. Wuhan: Huazhong University of Science and Technology, 2005: 77-79.
[7] 谢承利,陆继东,沈凯,等.基于焚烧运行参数的垃圾热值软测量模型[J].燃烧科学与技术,2007, 13(1): 81-85.
XIE Cheng-li, LU Ji-dong, SHEN Kai, et al. Indirect measurement model for waste heating value based on incineration operational parameters [J]. Journal of Combustion Science and Technology, 2007, 13(1): 81-85.
[8] MCCAULEY B, REINHART D, SEIR H, et al. Municipal solid waste composition studies [J]. ASCE Practice Periodical of Hazardous and Radioactive Waste, 1997, 1(4): 158-163.
[9] DAVID C, BRAINK K, JOHN M. Estimating the lower heating values of hazardous and solid wastes [J]. Air and Waste Manage Association, 1999, 49(4): 471-476.
[10] LIN X, WANG F, CHI Y, et al. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition [J]. Waste Management, 2105, 36: 24-32.
[11] Moh’d A, Hani A, Abu Q. Energy content of municipal solid waste in Jordan and its potential utilization [J]. Energy Conversation and Management, 2000, 41: 983-991.
[12] CHANG Y, LIN C, CHAN J, et al. Multiple regression models for the lower heating value of municipal solid waste in Taiwan [J]. Journal of Environmental Management, 2007, 85: 891-899.
[13] EBRU A, AHMET D. Energy content estimation of municipal solid waste by multiple regression analysis [C] ∥ 5th International Advanced Technologies Symposium. Turkery: [s. n.] 2009.
[14] DONG C, JIN B, LI D. Predicting the heating value of MSW with a feed forward neural network [J]. Waste Management, 2003, 23: 103-106.
[15] HEIKKINEN M, HILTUNEN T, LIUKKONEN M, et al. A modelling and optimization and optimization system for fluidized bed power plants [J]. Expert Systems with Applications, 2009, 36(7): 10247-10279.
[16] YILMAZ I, KAYNAR O. Multiple regression, ANNRBF, MLP and ANFIS models for prediction of swell potential of clay soils [J]. Expert Systems with Applications, 2011, 38(5): 5958-5966.
[17] MOGHADDAMNIA A, REMESAN R, HASSANPOUR M., et al. Comparison of LLR, MLP, Elman, NNARX and ANFIS Models-with a case study in solar radiation estimation [J]. Journal of Atmospheric and SolarTerrestrial Physics, 2009, 71(8): 975-982.
[18] ROOLHOLLAH N, GHOLAMALI H, KHOSRO A, et al. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration [J]. Atmospheric Environment, 2010, 444): 476-482.
[19] ZHANG Y, ZHOU Q, SUN C, et al. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment [J]. IEEE Transactions on Power Systems, 2008, 23(3): 853-858.
[20] YANG S, Ross S. Comparison of support vector machine, neural network and CART algorithms for the land-cover classification using limited training data points [J]. ISPRS Journal of Photogrammetry andremote sensing, 2012, 70: 78-87.
[21] YILMAZ I. Comparison of landslide susceptibility mapping methodologies for Kouyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks and support vector machine [J]. Environmental Earth Sciences, 2010, 614): 821-836.
[22] 潘海鹏,吕勇松. 时滞系统的模糊神经网络补偿控制[J]. 浙江大学学报:工学版,2010,44(7): 1343-1347.
Pan Hai-peng, LV Yong-song. Fuzzy neural network control method with compensation for timedelay system [J]. Journal of Zhejiang University:Engineering Science, 2010, 44(7): 1343-1347.
[23] CHEN M. A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering [J]. Information Science, 2013, 220, 180-195.
[24] 李培强,李欣然,陈辉华,等. 基于减法聚类的模糊神经网络负荷建模[J]. 电工技术学报,2006,21(9): 2-6.
LI Pei-qiang, LI Xin-ran, CHEN Hui-hua, et al. Fuzzy neural network load modeling based on subtractive clustering [J]. Transactions of China Electrotechnical Society, 2006, 2(19): 2-6.
[25] HOSSEIN A, TAGHANNSKI S, MASOUND K, et al. Implementing ANFIS for prediction of reservoir oil solution gas-oil ratio [J]. Journal of Natural Gas Science and Engineering, 2015, 15: 325-334.
[26] CHIU S. Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy Systems, 1994, 2: 267-278.
[27] JANG J. ANFIS: adaptive-network-based fuzzy inference system [J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 2(33): 665-685.
[28] 闫涛. 循环流化床焚烧炉中生活垃圾燃烧特性研究[D].北京:清华大学,2004: 44-49.
YAN Tao. Research on combustion characteristics of municipal solid waste in circulating fluidized bed incinerator [D].Beijing: Tsinghua University, 2004: 44-49.
[29] 刘青,于海洋,张守玉,等. 循环流化床垃圾焚烧锅炉炉膛设计分析[J]. 锅炉技术,2007,38(6): 20-25.
LIU Qing, YU Hai-yang, ZHANG Shou-yu, et al.Analysis for the design of circulating fluidized bed incinerator furnace [J]. Boiler Technology, 2007, 38(6):20-25.
[30] 徐旭常,周力行. 燃烧技术手册[M]. 北京:化学工业出版社,2008: 578581.
[31] 江爱鹏. 城市生活垃圾典型组分的燃烧特性和排放特性研究[D]. 杭州:浙江大学,2002: 43-58.
JIANG Ai-peng. Research on combustion characteristics and emission performance of typical municipal solid waste components in circulating fluidized bed incinerator [D]. Hangzhou: Zhejiang University, 2002: 43-58.
[32] 张衍国,李海明,李海清,等. 垃圾焚烧炉内传热计算[J].清华大学学报: 自然科学版,2001,41(21): 95-98.
ZHANG Yan-guo, LI Hai-ming, LI Hai-qing, et al. Heat transfer in a municipal solid waste incinerator [J]. Journal of Tsinghua University: Natural ScienceEdition, 2001, 41(21): 95-98.
[33] 张轩. 大型循环流化床床温动态模型与优化控制的研究[D].北京:华北电力大学,2013:15-16.
ZHANG Xuan. Research on dynamic modeling and optimization control on the bed temperature of circulating fluidized bed Boiler [D]. Beijing: North China Electric Power University, 2013: 15-16.
[34] CJJ/T 1372010. 生活垃圾焚烧厂评价标准[S]. 北京:中华人民共和国住房和城乡建设部,2010.
[35] SAITO M, AMGAI K, OGIWARA G., et al. Combustion characteristics of waste material containing high moisture [J]. Fuel, 2001, 8(9): 1201-1209.
[36] 董长青,金保升,仲兆平,等. 循环流化床掺烧生活垃圾实验研究[J]. 东南大学学报:自然科学版,2002,3(21): 95-99.
DONG Chang-qing, JIN Bao-sheng, ZHONG Z-ping, et al. Experimental study on the co-firing of municipal refuse in a circulating fluidized bed [J]. Journal of Southeast University:Natural Science Edition, 2002,3(21): 95-99.
[37] LIUKKONEN M, HLIKK E, HILTUNNEN T, et al. Dynamic soft sensors for NOx emissions in a circulating fluidized bed boiler [J]. Applied Energy, 2012, 97: 483-490.
[38] BUYUKDA M. Co-combustion of peanut hull and coal blends: artificial neural networks modelling, particle swarm optimization and Monte Carlo simulation[J]. Bioresource Technology, 2016, 216: 280-286.
[39] 李清毅,周昊,林阿平,等.基于网格搜索和支持向量机的灰熔点预测[J]. 浙江大学学报:工学版,2011,54(12): 2181-2187.
LI Qing-yi, ZHOU Hao, LIN A-ping, et al. Prediction of ash fusion temperature based on grid search and support vector machine [J]. Journal of Zhejiang University:Engineering Science, 2011,45(2): 2181-2187.
[40] 赵志刚,张纯杰,苟向锋,等. 基于粒子群优化支持向量机的太阳电池温度预测[J]. 物理学报,2015,64(8):1-7.
ZHAO Zhi-gang, ZHANG Chun-jie, GOU Xiang-feng, et al. Solar cell temperature prediction model of support vector machine optimized by particle swarm optimization algorithm [J]. Acta Physica Sinica, 2015,64(8):1-7.
[41] 王德明,王莉,张广明. 基于遗传BP神经网络的短期风速预测模型[J]. 浙江大学学报:工学版,2012,46(5): 837-841.
WANG De-ming, WANG Li, ZHANG Guang-ming. Short-term wind speed forecast model for wind farms based on genetic BP neural network [J]. Journal of Zhejiang University:Engineering Science, 2012, 46(5): 837-841. |