[1] VERENA K M, JAVIER B, KATRIN C, et al. Three-dimensional, task-specific robot therapy of the arm after stroke:a multicentre, parallel-group randomized trial[J]. The Lancet Neurology, 2014, 13(2):159-166.
[2] 杨启志,曹电锋,赵金海.上肢康复机器人研究现状的分析[J].机器人,2013,35(5):630-640. YANG Qi-zhi, CAO Dian-feng, ZHAO Jin-hai. Analysis on state of the art of upper limb rehabilitation robots[J]. Robot, 2013, 35(5):630-640.
[3] BOUTERAA Y, ABDALLAH I B. Exoskeleton robots for upper-limb rehabilitation[C]//IEEE International Multi-Conference on Systems, Signals and Devices.[S. l.]:IEEE, 2016:1-6.
[4] 郭晓辉,王晶,徐光华.手部功能康复机器人研究最新进展[J].中国康复医学杂志,2017,32(2):235-240. GUO Xiao-hui, WANG Jing, XU Guang-hua. Research on hand function rehabilitation robot[J]. Chinese Journal of Rehabilitation Medicine, 2017, 32(2):235-240.
[5] SHANECHI M M, HU R C, WILLIAMS Z M. A cortical-spinal prosthesis for targeted limb movement in paralysed primate avatars[J].Nature Communications, 2014,5(5):32-37.
[6] 郑悦,景晓蓓,李光林.人际智能协同在医疗康复机器人领域的应用[J].仪器仪表学报,2017,38(10):2373-2380. ZHENG Yue, JING Xiao-bei, LI Guang-lin. Application of human-machine intelligence synergy in the field of medical and rehabilitation robot[J]. Chinese Journal of Scientific Instrument, 2017, 38(10):2373-2380.
[7] 王行愚,金晶,张宇,等.脑控:基于脑-机接口的人机融合控制[J].自动化学报,2013,39(3):208-221. WANG Xing-Yu, JIN Jing, ZHANG Yu, et al. Brain control:human-computer integration control based on brain-computer interface[J]. Acta Automatica Sinica, 2013, 39(3):208-221.
[8] ROSATI G, GALLINA P, MASIERO S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4):560-569.
[9] KHUSHABA R N, KODAGODA S, TAKRURI M, et al. Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals[J]. Expert Systems with Applications, 2012, 39(12):10731-10738.
[10] DE L C J, ADAM A, WOTIZ R, et al. Decomposition of surface EMG signals[J]. Journal of Neurophysiology, 2006, 96(3):1646-1657.
[11] KHEZRI M, JAHED M. A neuro-fuzzy inference system for Semg-based identification of hand motion commands[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5):1952-1960.
[12] 黄鹏程,林雪,鲍官军,等.手指肌电信号稀疏分解重构与活动段特征提取研究[J].机电工程,2016,33(5):566-572. HUANG Peng-cheng, LIN Xue, BAO Guan-jun, et al. Sparse decomposition and reconstruction of finger EMG and feature extraction of active segment[J]. Journal of Mechanical and Electrical Engineering, 2016, 33(5):566-572.
[13] 官龙,易金华,李继才,等.握速可调式肌电假手的系统研究[J].中国生物医学工程学报,2013,32(4):471-476. GUAN Long, YI Jin-hua, LI Ji-cai, et al. A control system for the myoelectric prosthetic hand with adjustable grip speed[J]. Chinese Journal of BiomedicalEngineering, 2013, 32(4):471-476.
[14] MATSUBARA T, MORIMOTO J. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(8):2205-2213.
[15] CHU J U, MOON I, LEE Y J, et al. A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control[J]. IEEE/ASME Transactions on Mechatronics, 2007,12(3):282-290.
[16] 谢平,魏秀利,杜义浩,等.基于自排序熵的表面肌电信号特征提取方法[J].模式识别与人工智能,2014,27(6):496-501. XIE Ping, WEI Xiu-li, DU Yi-hao, et al. Featureextraction method of Semg based on auto permutation entropy[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(6):496-501.
[17] 丁帅,王亮.基于块稀疏贝叶斯学习的肌电信号特征提取[J]. 仪器仪表学报,2014,35(12):2731-2738. DING Shuai, WANG Liang. Feature extraction of surface electromyography based on block sparse Bayesian learning[J]. Chinese Journal of Scientific Instrument, 2014, 35(12):2731-2738.
[18] AMSUSS S, GOEBEL P M, JIANG N, et al. Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(4):1167-1176.
[19] FUTAMATA M, NAGATA, MAGATANI K. The evaluation of the discriminant ability of multiclass SVM in a study of hand motion recognition by using sEMG[C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).[S. l.]:IEEE, 2012:5246-5249.
[20] 佟丽娜,侯增广,彭亮,等.基于多路sEMG时序分析的人体运动模式识别方法[J].自动化学报,2014,40(5):810-821. TONG Li-na, HOU Zeng-guang, PENG Liang, et al. Multi-channels EMG time series analysis based human motion recognition method[J]. Acta Automatica Sinica, 2014, 40(5):810-821.
[21] 丁其川,熊安斌,赵新刚,等.基于表面肌电的运动意图识别方法研究及应用综述[J].自动化学报,2016,42(1):13-25. DING Qi-chuan, XIONG An-bin, ZHAO Xin-gang, et al. A review on researches and applications of s EMG-based motion intent recognition methods[J]. Acta Automatica Sinica, 2016, 42(1):13-25.
[22] VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009.
[23] CRAMMER K, SINGER Y. On the learnability and design of output codes for multiclass problems[J]. Machine Learning, 2002, 47:201-233.
[24] 刘飚,陈春萍,封化民,等.基于Fisher准则的SVM参数选择算法[J].山东大学学报:理学版,2012,47(7):50-54. LIU Biao, CHEN Chun-ping, FENG Hua-min, et al. A SVM parameters selection algorithm based on Fisher criterion[J]. Journal of Shandong University:Natural Science, 2012, 47(7):50-54.
[25] 都明宇.基于表面肌电信号的人手动作模式识别关键技术研究[D].杭州:浙江工业大学,2017. DU Ming-yu. Research on key technologies of handaction pattern recognition based on surface electromyography[D]. Hangzhou:Zhejiang University of Technology, 2017.
[26] 刘建,邹任玲,张东衡,等.表面肌电信号特征提取方法研究发展趋势[J].生物医学工程学进展,2015,36(3):164-168. LIU Jian, ZOU Ren-ling, ZHANG Dong-heng, et al. Research and development trend of feature extraction methods of surface electromyogrphic signals[J]. Progress in Biomedical Engineering, 2015, 36(3):164-168. |