Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (5): 997-1008    DOI: 10.3785/j.issn.1008-973X.2023.05.016
土木与交通工程     
基于速度风险势场的高速公路行车风险甄别方法
王博1,2,3(),张驰1,2,*(),任士鹏4,刘昌赫1,谢子龙1
1. 长安大学 公路学院,陕西 西安 710064
2. 教育部公路基础设施数字化工程研究中心,陕西 西安 710000
3. 南洋理工大学 土木与环境学院,新加坡 639798
4. 广东省交通规划设计研究院集团股份有限公司,广东 广州,510630
Expressway driving risk identification method based on velocity risk potential field
Bo WANG1,2,3(),Chi ZHANG1,2,*(),Shi-peng REN4,Chang-he LIU1,Zi-long XIE1
1. School of Highway, Chang’an University, Xi’an 710064, China
2. Engineering Research Center of Highway Infrastructure Digitalization, Ministry of Education, Xi’an 710000, China
3. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
4. Guangdong Communication Planning and Design Institute Group Co. Ltd, Guangzhou 510630, China
 全文: PDF(1671 KB)   HTML
摘要:

为了在宏观尺度下实现行车风险的空间定位、分类和量化,收集了路段和断面的车辆速度数据. 在分析速度空间分布特征的基础上,综合考虑速度变化和道路线形对行车风险的影响.引入安全势场理论,建立速度风险势场模型,提出高速公路行车风险宏观甄别方法,最后进行实例分析与有效性验证. 结果表明:在验证路段中甄别出的侧向、纵向和空间高风险路段占比分别为7.74%、12.88%、24.33%,区域内发生的事故占总事故的比例分别为31.21%、31.55%、43.26%. 速度风险势场强度和交通事故分布具有较强的规律性,能够在一定程度上表征路段行车风险构成和严重程度. 高速公路交通流速度波动在一定程度上反映道路安全状态,考虑到道路线形指标对行车风险的影响,车辆速度的变化可用于准确甄别行车风险.

关键词: 高速公路行车风险风险甄别速度分布风险势场    
Abstract:

The vehicle speed data on road segments and cross-sections were collected to achieve the spatial localization, classification, and quantification of driving risk at the macro scale. The influence of speed change and road alignment on driving risk was comprehensively considered based on the analysis of the spatial distribution characteristics of the vehicle speed. The safety potential field theory was introduced, the velocity risk potential field model was established, and a macro-identification method for expressway driving risk was proposed. Then the case analysis and validity check were conducted. The results showed that the proportions of lateral, longitudinal and spatial high-risk sections identified in the verification sections were 7.74%, 12.88%, and 24.33% respectively. The accidents in these areas accounted for 31.21%, 31.55% and 43.26% of the total accidents respectively. The intensity of the speed risk potential field and the distribution of traffic accidents have strong regularity, which can represent the composition and severity of the traffic risk in the road section to a certain extent. The velocity variation of expressway traffic flow reflects the road safety states to a certain extent. Taking into account the impact of road alignment index on driving risk, the change in vehicle velocity can be used to identify driving risk precisely.

Key words: expressway    driving risk    risk identification    velocity distribution    risk potential field
收稿日期: 2022-05-07 出版日期: 2023-05-09
CLC:  U 412  
基金资助: 国家重点研发计划资助项目(2020YFC1512005);四川省科技计划资助项目(2022YFG0048);四川省交通运输厅科技项目(2019-ZL-12, 2022-ZL-04); 山西省重点研发计划资助项目(202102020101014)
通讯作者: 张驰     E-mail: wb1010110wb@chd.edu.cn;zhangchi@chd.edu.cn
作者简介: 王博(1995—),男,博士生,从事交通安全研究. orcid.org/0000-0002-0593-6612. E-mail: wb1010110wb@chd.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王博
张驰
任士鹏
刘昌赫
谢子龙

引用本文:

王博,张驰,任士鹏,刘昌赫,谢子龙. 基于速度风险势场的高速公路行车风险甄别方法[J]. 浙江大学学报(工学版), 2023, 57(5): 997-1008.

Bo WANG,Chi ZHANG,Shi-peng REN,Chang-he LIU,Zi-long XIE. Expressway driving risk identification method based on velocity risk potential field. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 997-1008.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.05.016        https://www.zjujournals.com/eng/CN/Y2023/V57/I5/997

序号 断面桩号 车牌号 车辆类型 T/s 行驶方向 v/(km·h?1) 车道号
1 K2084 川D602** 大货车 20200223000246 由南向北 58 2
2 K2084 川U676** 大型客车 20200223000311 由南向北 61 2
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
124216 K2114 晋KH16** 大型客车 20200322235935 由北向南 61 2
表 1  西南地区某高速道路断面监测数据
序号 案发日期 公里桩号 车型 伤亡人数 事故类型
轻伤 重伤 死亡
1 2017-9-24 K2094+719 轿车 0 0 0 单车事故
2 2017-9-30 K2094+473 轿车 0 0 0 追尾
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
438 2020-12-20 K2105+472 轿车 0 0 0 单车事故
439 2020-12-24 K2120+200 轿车 0 0 0 单车事故
表 2  西南地区某高速公路事故数据
图 1  来自百度POI和高清卡口的车速数据对比
断面 车道 $\bar v$/ (km·h?1) ${R_{{\text{lane}}}}$ sd
K2084 内侧 66.50 0.847 6.43
外侧 56.36 6.80
K2088 内侧 66.12 0.853 6.77
外侧 56.43 6.75
K2110 内侧 70.93 0.841 8.35
外侧 59.67 7.68
K2114 内侧 69.83 0.838 5.63
外侧 58.53 5.86
表 3  断面车速统计
图 2  断面车速时间和空间分布特征分析
图 3  交通流速度梯度与交通事故分布
图 4  道路纵坡与交通事故分布
图 5  道路平面曲率参数与交通事故分布
图 6  公路速度风险势场概念图
车道类别 φx
左边线 内侧车道 车道分界线 中间车道 外侧车道 右边线
双向四车道 0.900 1.000 0.925 0.925 0.850 0.800
双向六车道 0.900 1.000 0.950 0.825 0.900 0.750 0.700
表 4  速度势能侧向分布系数取值表
图 7  K2084断面车速变异系数时间分布统计
序号 起点桩号 终点桩号 平面线形 R/m α $ \bar i $/% β
1 K2064+140.000 K2065+174.558 圆曲线 800 3.13 ?2.19 1.19
2 K2065+175.558 K2065+200.000 缓和曲线 ? 1.00 ?2.19 1.19
3 K2065+200.000 K2065+295.558 缓和曲线 ? 1.00 2.12 1.00
$\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $
198 K2094+000.000 K2094+140.000 直线 ? 1.00 ?3.20 2.20
表 5  K2064+140~K2094+140路段侧向和纵向风险影响因子计算表
图 8  K2064+140~K2094+140路段3种速度风险势场与车辆交通事故的分布
图 9  K2094+140~K2130+640路段3种速度风险势场与车辆交通事故的分布
类别 阈值 高风险路段占比/% 事故比例/% 总体事故比例/% 甄别效益比
侧向风险事故 纵向风险事故 形态不明事故
Ex 75.5 7.74 21.43 ? 34.9 31.21 4.03
Ey 74.6 12.88 ? 34.21 30.2 31.55 2.45
Ev 106.8 24.33 32.14 43.42 47.65 43.26 1.78
表 6  基于3种速度风险势场强度的高风险路段甄别效果对比
1 中华人民共和国国务院安全生产委员会. 国务院安全生产委员会关于印发道路交通安全“十三五”规划的通知[A/OL]. [2017-08-08] (2022-08-22). https://www.mem.gov.cn/gk/gwgg/agwzlfl/tz_01/201709/t20170907_235227.shtml.
2 MA Y, MENG H, CHEN S, et al Predicting traffic conflicts for expressway diverging areas using vehicle trajectory data[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146 (3): 04020003
doi: 10.1061/JTEPBS.0000320
3 SOLOMON D. Accidents on main rural highways related to speed, driver, and vehicle[R]. United States: Bureau of Public Roads, 1970: 1-44.
4 陈雨人, 付云天, 汪凡 基于支持向量回归的视距计算模型建立和应用[J]. 中国公路学报, 2018, 31 (4): 105- 113
CHEN Yu-ren, FU Yun-tian, WANG Fan Establishment and application of sight distance computing model based on support vector regression[J]. China Journal of Highway and Transport, 2018, 31 (4): 105- 113
doi: 10.3969/j.issn.1001-7372.2018.04.013
5 ADELL E, VÁRHELYI A, DALLA F M The effects of a driver assistance system for safe speed and safe distance–a real-life field study[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (1): 145- 155
doi: 10.1016/j.trc.2010.04.006
6 张驰, 孟良, 汪双杰, 等 高速公路曲线路段小客车制动行为侧滑风险仿真分析[J]. 中国公路学报, 2015, 28 (12): 134- 142
ZHANG Chi, MENG Liang, WANG Shuang-jie, et al Sideslip risk simulation analysis of passenger car braking behavior on expressway curved sections[J]. Transportation Research Part C: Emerging Technologies, 2015, 28 (12): 134- 142
doi: 10.3969/j.issn.1001-7372.2015.12.019
7 YANG H, OZBAY K Estimation of traffic conflict risk for merging vehicles on highway merge section[J]. Transportation Research Record, 2011, 2236 (1): 58- 65
doi: 10.3141/2236-07
8 WANG X, WANG X Speed change behavior on combined horizontal and vertical curves: driving simulator-based analysis[J]. Accident Analysis and Prevention, 2018, 119 (1): 215- 224
9 AARTS L, VAN S I Driving speed and the risk of road crashes: a review[J]. Accident Analysis and Prevention, 2006, 38 (2): 215- 224
doi: 10.1016/j.aap.2005.07.004
10 YU R, QUDDUS M, WANG X, et al Impact of data aggregation approaches on the relationships between operating speed and traffic safety[J]. Accident Analysis and Prevention, 2018, 120 (1): 304- 310
11 WU H Comparing Google maps and uber movement travel time data[J]. Findings, 2019, (1): 5115
12 WOLF M T, BURDICK J W. Artificial potential functions for highway driving with collision avoidance [C]// 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 3731-3736.
13 WOO H, JI Y, KONO H, et al Lane-change detection based on vehicle-trajectory prediction[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 1109- 1116
doi: 10.1109/LRA.2017.2660543
14 陶鹏飞, 金盛, 王殿海 基于人工势能场的跟驰模型[J]. 东南大学学报:自然科学版, 2011, 41 (4): 854- 858
TAO Peng-fei, JIN Sheng, WANG Dian-hai Car-following model based on artificial potential field[J]. Journal of Southeast University: Natural Science Edition, 2011, 41 (4): 854- 858
15 WANG J, WU J, ZHENG X, et al Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C: Emerging Technologies, 2016, 72 (1): 306- 324
16 吴剑. 考虑人-车-路因素的行车风险评价方法研究[D]. 北京: 清华大学, 2015: 1-68.
WU Jian. Research on driver-vehicle-road factors considered driving risk evaluation method [D]. Beijing: Tsinghua University, 2015: 1-68.
17 SHOARIANSATTARI K, POWELL D Measured vehicle flow parameters as predictors in road traffic accident studies[J]. Traffic Engineering and Control, 1987, 28 (6): 328- 329
18 华杰工程咨询有限公司. 公路项目安全性评价规范: JTG B05—2015 [S]. 北京: 人民交通出版社, 2015.
19 ZHU Z, LU Y, FU C, et al Research on the safety audit methods for two-lane highway based on HRV[J]. Mathematical Problems in Engineering, 2014, (1): 308028
20 陈昭明, 徐文远 基于负二项分布的高速公路交通事故影响因素分析[J]. 交通信息与安全, 2022, 40 (1): 28- 35
CHEN Shao-ming, XU Wen-yuan An analysis of factors influencing freeway crashes with a negative binomial model[J]. Journal of Transport Information and Safety, 2022, 40 (1): 28- 35
doi: 10.3963/j.jssn.1674-4861.2022.01.004
21 马聪, 张生瑞, 马壮林, 等 高速公路交通事故非线性负二项预测模型[J]. 中国公路学报, 2018, 31 (11): 176- 185
MA Cong, ZHANG Sheng-rui, MA Zhuang-lin, et al Nonlinear negative binomial regression model of expressway traffic accident frequency prediction[J]. China Journal of Highway and Transport, 2018, 31 (11): 176- 185
doi: 10.3969/j.issn.1001-7372.2018.11.019
22 AHMED M, HUANG H, ABDELATY M, et al Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway[J]. Accident Analysis and Prevention, 2011, 43 (4): 1581- 1589
doi: 10.1016/j.aap.2011.03.021
23 林宣财, 张旭丰, 王佐, 等 基于交通事故多发位置的区间平均纵坡控制指标研究[J]. 公路交通科技, 2021, 38 (9): 105- 113
LIN Xuan-cai, ZHANG Xu-feng, WANG Zuo, et al Study on control indicator of interval average longitudinal slope based on location of traffic accidents[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (9): 105- 113
doi: 10.3969/j.issn.1002-0268.2021.09.014
24 WONG Y D, NICHOLSON A Driver behaviour at horizontal curves: risk compensation and the margin of safety[J]. Accident Analysis and Prevention, 1992, 24 (4): 425- 436
doi: 10.1016/0001-4575(92)90053-L
25 张驰, 王博, 贺九平, 等 基于行车动力学的高速公路积水路段行车风险分析[J]. 交通信息与安全, 2019, 37 (5): 9- 17
ZHANG Chi, WANG Bo, HE Jiu-ping, et al Traffic risk analysis of ponding sections on freeways based on driving dynamics[J]. Journal of Transport Information and Safety, 2019, 37 (5): 9- 17
doi: 10.3963/j.issn.1674-4861.2019.05.002
26 中交第一公路勘察设计研究院有限公司. 公路路线设计规范: JTG D20-2017[S]. 北京: 人民交通出版社, 2017.
27 ANSSEN W H, TENKINK E Considerations on speed selection and risk homeostasis in driving[J]. Accident Analysis and Prevention, 1988, 20 (2): 137- 142
doi: 10.1016/0001-4575(88)90030-9
28 XU C, LIU P, WANG W, et al Evaluation of the impacts of traffic states on crash risks on freeways[J]. Accident Analysis and Prevention, 2012, 47 (1): 162- 171
29 GARBER N J, EHRHART A A Effect of speed, flow, and geometric characteristics on crash frequency for two-lane highways[J]. Transportation Research Record, 2000, 1717 (1): 76- 83
doi: 10.3141/1717-10
30 WANG X, WANG T, TARKO A, et al The influence of combined alignments on lateral acceleration on mountainous freeways: a driving simulator study[J]. Accident Analysis and Prevention, 2015, 76 (1): 110- 117
31 汪双杰, 方靖, 周荣贵, 等 公路运行速度特征研究[J]. 中国公路学报, 2010, 23 (S1): 24- 27
WANG Shuang-jie, FANG Jing, ZHOU Rong-gui, et al Study on characteristics of highway speed[J]. China Journal of Highway and Transport, 2010, 23 (S1): 24- 27
32 李长城, 刘小明, 荣建 降雨条件下高速公路车辆行驶速度特性[J]. 北京工业大学学报, 2015, 41 (3): 412- 418
LI Chang-cheng, LIU Xiao-ming, RONG Jian Speed characteristics of highway vehicles under rainfall conditions[J]. Journal of Beijing University of Technology, 2015, 41 (3): 412- 418
doi: 10.11936/bjutxb2014040012
33 SIL G, NAMA S, MAJI A, et al Effect of horizontal curve geometry on vehicle speed distribution: a four-lane divided highway study[J]. Transportation Letters, 2020, 12 (10): 713- 722
doi: 10.1080/19427867.2019.1695562
34 GAO C, XU J, LI Q, et al The effect of posted speed limit on the dispersion of traffic flow speed[J]. Sustainability, 2019, 11 (13): 3594
doi: 10.3390/su11133594
35 HAUER E Speed and safety[J]. Transportation Research Record, 2009, 2103 (1): 10- 17
doi: 10.3141/2103-02
36 EGGERT J. Solomon curve 2020: relating microscopic risk models with accident statistics [C]// 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Rio de Janeiro: IEEE, 2016: 2293-2300.
37 林宣财, 曹骏驹, 周兴顺, 等 互通式立交单车道匝道宽度取值与单出入口优化设计[J]. 公路交通科技, 2021, 38 (9): 123- 131
LIN Xuan-cai, CAO Jun-ju, ZHOU Xing-shun, et al Value of single lane ramp width and optimization design of single entrance and exit for interchange[J]. Journal of Highway and Transportation Research, 2021, 38 (9): 123- 131
doi: 10.3969/j.issn.1002-0268.2021.09.016
38 QU D, CHEN X, YANG W, et al Modeling of car-following required safe distance based on molecular dynamics[J]. Mathematical Problems in Engineering, 2014, (1): 604023
39 孙祥龙, 陆建, 戴越 普通公路车速分布特性影响因素分析[J]. 交通信息与安全, 2012, 30 (1): 5- 9
SUN Xiang-long, LU Jian, DAI Yue Analysis of factors influencing speed distribution at ordinary highway[J]. Traffic Information and Safety, 2012, 30 (1): 5- 9
doi: 10.3963/j.ISSN1674-4861.2012.01.002
40 HURDLE V F, MERLO M I, ROBERTSON D Study of speed-flow relationships on individual freeway lanes[J]. Transportation Research Record, 1997, 1591 (1): 7- 13
doi: 10.3141/1591-02
41 SHANKAR V, MANNERING F Modeling the endogeneity of lane-mean speeds and lane-speed deviations: a structural equations approach[J]. Transportation Research Part A: Policy and Practice, 1998, 32 (5): 311- 322
doi: 10.1016/S0965-8564(98)00003-2
42 陆建, 孙祥龙, 戴越 普通公路车速分布特性的回归分析[J]. 东南大学学报:自然科学版, 2012, 42 (2): 374- 377
LU Jian, SUN Xiang-long, DAI Yue Regression analysis on speed distribution characteristics of ordinary road[J]. Journal of Southeast University: Natural Science Edition, 2012, 42 (2): 374- 377
43 吴明先, 曹骏驹, 林宣财, 等 多车道高速公路不同车道运行速度的特点[J]. 公路交通科技, 2021, 38 (9): 33- 44
WU Ming-xian, CAO Jun-ju, LIN Xuan-cai, et al Operating speed characteristics in different lanes of multi-lane expressway[J]. Journal of Highway and Transportation Research and Development, 2021, 38 (9): 33- 44
doi: 10.3969/j.issn.1002-0268.2021.09.005
44 裴玉龙, 程国柱 高速公路车速离散性与交通事故的关系及车速管理研究[J]. 中国公路学报, 2004, 17 (1): 74- 78
PEI Yulong, CHENG Guozhu Research on the relationship between discrete character of speed and traffic accident and speed management of freeway[J]. China Journal of Highway and Transport, 2004, 17 (1): 74- 78
doi: 10.3321/j.issn:1001-7372.2004.01.017
[1] 夏莹杰,欧阳聪宇. 面向高速公路抛洒物检测的动态背景建模方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1249-1255.
[2] 王薇, 程泽阳, 刘梦依, 杨兆升. 基于时空相关性的交通流故障数据修复方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1727-1734.
[3] 徐程, 曲昭伟, 王殿海, 金盛. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1331-1338.
[4] 李楠, 赵光宙. 基于交通流混合模型的高速公路状态估计[J]. J4, 2012, 46(10): 1846-1850.
[5] 许峰 陈仁朋 陈云敏 徐立新. 桩承式路堤的工作性状分析[J]. J4, 2005, 39(9): 1393-1399.