Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1249-1255    DOI: 10.3785/j.issn.1008-973X.2020.07.001
自动化技术、计算机技术     
面向高速公路抛洒物检测的动态背景建模方法
夏莹杰(),欧阳聪宇
浙江大学 计算机科学与技术学院,浙江 杭州 310027
Dynamic image background modeling method for detecting abandoned objects in highway
Ying-jie XIA(),Cong-yu OUYANG
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1099 KB)   HTML
摘要:

针对高速公路抛洒物检测中传统的固定背景建模方法容易因开放环境变化产生大量的前景噪声,动态背景建模方法容易因抛洒物的静止特性导致前景对象快速融入背景,提出基于背景分离高斯混合模型(BS-GMM)的动态背景建模方法. 该方法对传统高斯混合模型的背景划分和模型匹配方法进行改进,设计基于像素点的高斯分布背景模型权值的衰减状况进行背景建模和背景更新的方法,既能减少开放环境大量环境噪声的影响,也能对抛洒物快速进入静止状态后的准确检测,在计算性能上能够达到实时检测的效果. 实验结果证明,BS-GMM方法在抛洒物检测过程中产生的噪声数量比其他方法少,且对静止超过20 s的物体能够作为前景目标提取,因此能够有效地应用于高速公路抛洒物的准确识别.

关键词: 高速公路抛洒物检测高斯混合模型背景建模权值衰减    
Abstract:

There have been some research in different image background modeling methods to detect abandoned objects in highway scenes. However, traditional fixed background modeling methods easily generate foreground noises because of the environmental changes, and dynamic background modeling methods quickly integrate the motionless foreground abandoned objects into the background model. A dynamic background modeling method was proposed based on background separation Gaussian mixture model (BS-GMM) for detecting abandoned objects in highway to solve this problem. Background division method and model matching method were improved in traditional Gaussian mixture model. The weight attenuation of the Gaussian distribution models per pixel was utilized to dynamically model and update image background model. The background update frequency of the traditional Gaussian mixture model method was retained, and the stationary target was continuously detected by the method of background separation. The method can reduce the impact of environmental noises easily generated in the open environment of highway, and effectively detect the long-time motionless abandoned objects. The method can achieve the effect of real-time detection in terms of computing performance. The experimental results show that our BS-GMM method produces less foreground noises than other methods, and detects abandoned objects which are motionless for more than 20 seconds. BS-GMM method can be effectively applied to detect abandoned objects in highway.

Key words: highway    abandoned object detection    Gaussian mixture model    background modeling    weight attenuation
收稿日期: 2020-02-25 出版日期: 2020-07-05
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(61873232)
作者简介: 夏莹杰(1982—),男,副教授,从事智慧交通、大数据分析及车联网安全的研究. orcid.org/0000-0002-4642-2503. E-mail: xiayingjie@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
夏莹杰
欧阳聪宇

引用本文:

夏莹杰,欧阳聪宇. 面向高速公路抛洒物检测的动态背景建模方法[J]. 浙江大学学报(工学版), 2020, 54(7): 1249-1255.

Ying-jie XIA,Cong-yu OUYANG. Dynamic image background modeling method for detecting abandoned objects in highway. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1249-1255.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.001        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1249

图 1  BS-GMM方法流程
图 2  传统背景划分方法
图 3  改进背景划分方法
视频类型 场景数量 视频数量 视频时长/min
含抛洒物 30 40 2
无抛洒物 30 120 2
表 1  视频数据集信息
图 4  含抛洒物视频检测正确性分析
图 5  静止抛洒物目标持久性提取效果
图 6  单个视频前景噪声数量分析
图 7  环境条件变化下前景提取效果对比
图 8  数据集平均前景噪声数量分析
图 9  抛洒物检测效果展现
1 叶芳芳, 许力 实时的静止目标与鬼影检测及判别方法[J]. 浙江大学学报: 工学版, 2015, 49 (1): 181- 185
YE Fang-fang, XU Li Real-time detection and discrimination of static objects and ghosts[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (1): 181- 185
2 BEGEL A, PHANG K Y, ZIMMERMANN T. Codebook: discovering and exploiting relationships in software repositories [C] // IEEE International Conference on Software Engineering. Cape Town: IEEE, 2010: 125-134.
3 STAUFFER C. Adaptive background mixture model for real-time tracking [C] // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins: IEEE, 1998: 246-252.
4 陈祖爵, 陈潇君, 何鸿 基于改进的混合高斯模型的运动目标检测[J]. 中国图象图形学报, 2007, 12 (9): 1585- 1589
CHEN Zu-jue, CHEN Xiao-jun, HE Hong Moving object detection based on improved mixture Gaussian models[J]. Journal of Image and Graphics, 2007, 12 (9): 1585- 1589
doi: 10.3969/j.issn.1006-8961.2007.09.014
5 刘鑫, 刘辉, 强振平, 等 混合高斯模型和帧间差分相融合的自适应背景模型[J]. 中国图象图形学报, 2008, 13 (4): 729- 734
LIU Xin, LIU Hui, QIANG Zhen-ping, et al Adaptive background modeling based on mixture Gaussian model and frame subtraction[J]. Journal of Image and Graphics, 2008, 13 (4): 729- 734
doi: 10.11834/jig.20080422
6 SILVIA F, GIANLUCA G, MASSIMO N, et al. A new method for real time abandoned object detection and owner tracking [C] // 2006 IEEE International Conference on Image Processing. Atlanta: IEEE, 2006: 3329-3332.
7 汪贵平, 马力旺, 郭璐, 等 高速公路抛洒物事件图像检测算法[J]. 长安大学学报: 自然科学版, 2017, 37 (5): 81- 88
WANG Gui-ping, MA Li-wang, GUO Lu, et al Image detection algorithm for incident of discarded things in highway[J]. Journal of Chang'an University: Natural Science Edition, 2017, 37 (5): 81- 88
8 FU H, MEI X, MAL H, et al. Abandoned object detection in highway scene [C] // 6th International Conference on Pervasive Computing and Applications. Port Elizabeth: IEEE, 2011: 117-121.
9 WEN J, GONG H, ZHANG X, et al. Generative model for abandoned object detection [C] // Proceedings of the International Conference on Image Processing. Cairo: IEEE, 2009: 853-856.
10 ELENA S, CARLO S R Real-time video-shot detection for scene surveillance applications[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2000, 9 (1): 69- 79
doi: 10.1109/83.817599
11 阮雅端, 高妍, 张宇杭, 等. 基于深度卷积网络的路面遗留物检测方法技术: 201710059678.0 [P]. 2017-06-13.
RUAN Ya-duan, GAO Yan, ZHANG Yu-hang, et al. Detection method technology of pavement residues based on deep convolution network: 201710059678.0 [P]. 2017-06-13.
12 金瑶, 张锐, 尹东 城市道路视频中小像素目标检测[J]. 光电工程, 2019, 46 (9): 76- 83
JIN Yao, ZHANG Rui, YIN Dong Object detection for small pixel in urban roads videos[J]. Opto-Electronic Engineering, 2019, 46 (9): 76- 83
13 ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction [C] // Proceedings of the 17th International Conference on Pattern Recognition. Cambridge: IEEE, 2004: 28-31.
14 YINGDONG M A, LIU Y, LIU S, et al Multiple object detection and tracking in complex background[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 31 (2): 809- 830
15 赵占杰, 林小竹, 张金燕 一种基于码本背景模型的运动目标检测方法[J]. 北京石油化工学院学报, 2010, (1): 45- 49
ZHAO Zhan-jie, LIN Xiao-zhu, ZHANG Jin-yan A moving object detection method based on codebook background model[J]. Journal of Beijing Institute of Petro-chemical Technology, 2010, (1): 45- 49
[1] 曾煌尧,李丹丹,马严,丛群. 园区网风险账号评估方法[J]. 浙江大学学报(工学版), 2020, 54(9): 1761-1767.
[2] 王薇, 程泽阳, 刘梦依, 杨兆升. 基于时空相关性的交通流故障数据修复方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1727-1734.
[3] 徐程, 曲昭伟, 王殿海, 金盛. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1331-1338.
[4] 赵学武, 冀俊忠, 姚垚. 基于免疫克隆选择算法搜索GMM的脑岛功能划分[J]. 浙江大学学报(工学版), 2017, 51(12): 2320-2331.
[5] 刘扬,张海萍,邓扬,李明. 考虑车辆超载的公路简支梁桥疲劳性能[J]. 浙江大学学报(工学版), 2015, 49(11): 2172-2178.
[6] 李楠, 赵光宙. 基于交通流混合模型的高速公路状态估计[J]. J4, 2012, 46(10): 1846-1850.
[7] 单振宇, 杨莹春. 基于UBM降阶算法的高效说话人识别系统[J]. J4, 2009, 43(6): 978-982.
[8] 许峰 陈仁朋 陈云敏 徐立新. 桩承式路堤的工作性状分析[J]. J4, 2005, 39(9): 1393-1399.