Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (4): 674-682    DOI: 10.3785/j.issn.1008-973X.2022.04.006
交通工程、土木工程     
覆雪准则参数改进的高速列车转向架覆雪模拟
陶宇1(),章博睿2(),徐磊1,田洪雷1,张亚鹏2,张清文2
1. 中车青岛四方机车车辆股份有限公司,山东 青岛 266111
2. 哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150090
Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation
Yu TAO1(),Bo-rui ZHANG2(),Lei XU1,Hong-lei TIAN1,Ya-peng ZHANG2,Qing-wen ZHANG2
1. CRRC Qingdao Sifang Limited Company, Qingdao 266111, China
2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
 全文: PDF(2183 KB)   HTML
摘要:

采用Realizable k-ω湍流模型,耦合离散相模型(DPM),对高速列车运行时的车底覆雪问题开展模拟研究. 模拟中,考虑流场作用与颗粒-壁面碰撞特征2个方面,建立基于壁面阈值摩擦速度与颗粒-壁面捕捉角的壁面覆雪判别准则. 选用Paradot开展的简单几何体覆雪试验作为原型,通过控制变量分析,对准则参数设置的合理性进行讨论. 与原型覆雪的结果对比表明,以往研究中对覆雪准则相关参数的取值偏小,建议改进2个判别参数,分别为1.0 m/s与60°. 利用改进参数的准则,对我国现有运营某型号高速列车运行时的转向架覆雪进行模拟评估. 结果表明,转向架易出现覆雪的区域主要位于部件背风侧壁面及连接角落,尤其是中部构架横梁与齿轮减速箱,后转向架覆雪分布区域更分散.

关键词: 高速列车转向架离散相模型(DPM)壁面覆雪捕捉准则    
Abstract:

A simulation study of analyzing the snow accumulation on the bogie regions of a high-speed train was conducted based on the Realizable k-ω turbulence model coupling with the discrete phase model (DPM). A series of snow-wall bonding criteria, including surface threshold friction velocity and capture angle, were proposed by considering the interactions and collisions between flow and particles. The rationality of the parameter settings was discussed by using control variable parameter analyses based on the prototype test provided by Paradot. The simulation results were compared with the prototype test. The parameter settings adapted in the previous studies for the snow-wall bonding might be relevantly low. The relative values in the criteria are 1.0 m/s and 60°, respectively. Then the validated parameter settings were used, and the snow accumulation estimations on the bogie regions of a high-speed train in China were conducted. Results show that snow accumulations are mainly located on the leeward side (surface) of each bogie component and connecting corners, especially the frame beam and the gear reduction box. The snow-covering areas of the rear bogie are more dispersed.

Key words: high-speed train    bogie    discrete phase model (DPM)    snow-wall bonding criteria
收稿日期: 2021-05-13 出版日期: 2022-04-24
CLC:  TU 111  
基金资助: 中车青岛四方股份重点科研资助项目(JS-TK-2020-450)
作者简介: 陶宇(1989—),男,博士,高级工程师,从事流体力学在高速列车领域的应用研究. orcid.org/0000-0002-9903-2437. E-mail: taoyu@cqsf.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陶宇
章博睿
徐磊
田洪雷
张亚鹏
张清文

引用本文:

陶宇,章博睿,徐磊,田洪雷,张亚鹏,张清文. 覆雪准则参数改进的高速列车转向架覆雪模拟[J]. 浙江大学学报(工学版), 2022, 56(4): 674-682.

Yu TAO,Bo-rui ZHANG,Lei XU,Hong-lei TIAN,Ya-peng ZHANG,Qing-wen ZHANG. Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 674-682.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I4/674

图 1  壁面覆雪判别准则的说明
图 2  楔体模型覆雪试验的布置
图 3  试验楔体模型覆雪的结果
图 4  楔体模型物面网格与边界
图 5  楔体模型周边的流场
图 6  入射雪颗粒的迹线
图 7  楔体模型A摩擦速度
图 8  准则捕捉角的变参数分析
图 9  模型中轴线单元颗粒的捕捉率
图 10  高速列车的模拟分析模型
图 11  模拟分析模型的网格无关性验证
图 12  雪颗粒的引入及迹线
图 13  高速列车转向架周围的流场分布
图 14  后转向架的摩擦速度分布
图 15  转向架单元颗粒的捕捉率
1 王永飞. 基于简单模型试验的寒区高速列车转向架覆雪模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-3.
WANG Yong-fei. Snow-accumulation simulation of high-speed train bogie area in frigid zone based on experiment of basic models [D]. Harbin: Harbin Institute of Technology, 2020: 1-3.
2 苗秀娟, 何侃 高速列车转向架区域积雪形成原因及防积雪研究[J]. 中南大学学报: 自然科学版, 2018, 49 (3): 252- 259
MIAO Xiu-juan, HE Kan Cause analysis of snow packing in high-speed train’s bogie regions and anti-snow packing design[J]. Journal of Central South University: Science and Technology, 2018, 49 (3): 252- 259
3 THOMAS J De-icing[J]. International Railway Journal, 2009, 49 (1): 24- 25
4 TRENKER M, PAYER W, KRENN C, et al. Numerical simulation of snow entrainment with application to train undercarriage design [C]// NAFEMS World Congress. Malta: NAFEMS, 2005: 29-33.
5 PARADOT N, ALLAIN E, CROUE R, et al. Development of a numerical modelling of snow accumulation on a high speed train [C]// International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire: Civil-Comp Press, 2014: 1-17.
6 ALLAIN E, PARADOT N. RIBOURG M, et al. Experimental and numerical study of snow accumulation on a high-speed train [C]// Proceedings of the 49th International Symposium of Applied Aerodynamics. Lille: [s. n. ], 2014: FP18.
7 蔡路, 张继业, 李田 高速列车转向架区域雪粒运动特性分析[J]. 中国科学: 技术科学, 2019, 49 (12): 1593- 1602
CAI Lu, ZHANG Ji-ye, LI Tian Analysis of the motion characteristics of snow particles in the bogie region of a high-speed train[J]. Scientia Sinica Technologica, 2019, 49 (12): 1593- 1602
8 蔡路, 李田, 张继业 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报:工学版, 2020, 54 (4): 804- 815
CAI Lu, LI Tian, ZHANG Ji-ye Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 804- 815
9 张乐, 李田, 蔡路, 等 雪粒参数对高速列车转向架区域雪粒堆积的影响[J]. 机械工程学报, 2020, 56 (10): 216- 224
ZHANG Le, LI Tian, CAI Lu, et al Effect of snow parameters on snow accumulation in high-speed train bogies[J]. Journal of Mechanical Engineering, 2020, 56 (10): 216- 224
doi: 10.3901/JME.2020.10.216
10 WANG J B, ZHANG J, XIE Y, et al A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train[J]. Cold Region Science and Technology, 2018, 148: 121- 130
doi: 10.1016/j.coldregions.2018.01.010
11 WANG J B, GAO G J, ZHANG Y, et al Anti-snow performance of snow shields designed for brake calipers of a high-speed train[J]. Journal of Rail and Rapid Transit, 2019, 233 (2): 121- 140
doi: 10.1177/0954409718783327
12 GAO G J, ZHANG Y, XIE F, et al Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model[J]. Journal of Rail and Rapid Transit, 2019, 233 (2): 141- 159
doi: 10.1177/0954409718785290
13 王东屏, 尤明, 范军, 等 高速动车组转向架积雪特性数值仿真及优化设计[J]. 铁道学报, 2019, 41 (4): 25- 32
WANG Dong-ping, YOU Ming, FAN Jun, et al Numerical simulation on snowpack characteristics of high-speed EMU bogie and optimization design[J]. Journal of the China Railway Society, 2019, 41 (4): 25- 32
doi: 10.3969/j.issn.1001-8360.2019.04.004
14 韩运动, 姚松, 陈大伟, 等 高速列车转向架舱内流场实车测试与数值模拟[J]. 交通运输工程学报, 2015, 15 (6): 51- 60
HAN Yun-dong, YAO Song, CHEN Da-wei, et al Real vehicle test and numerical simulation of flow field in high- speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (6): 51- 60
doi: 10.3969/j.issn.1671-1637.2015.06.007
15 丁叁叁, 田爱琴, 董天韵, 等 端面下斜导流板对高速列车转向架防积雪性能的影响[J]. 中南大学学报: 自然科学版, 2016, 47 (4): 1400- 1405
DING San-san, TIAN Ai-qin, DONG Tian-yun, et al Influence of inclined guiding plate on anti-snow performance of high-speed train bogie[J]. Journal of Central South University: Science and Technology, 2016, 47 (4): 1400- 1405
16 何德华, 王刚义, 陈厚嫦, 等 基于风雪两相流的高寒动车组转向架防冰雪扰流技术研究[J]. 铁道机车车辆, 2016, 36 (4): 38- 42
HE De-hua, WANG Gang-yi, CHEN Hou-chang, et al Analysis on two-phase flowing anti-ice/snow of low-temperature EMU bogie[J]. Railway Locomotive and Car, 2016, 36 (4): 38- 42
doi: 10.3969/j.issn.1008-7842.2016.04.09
17 冯永华, 黄照伟, 张琰, 等 高寒动车组转向架区域积雪结冰数值仿真研究[J]. 铁道科学与工程学报, 2017, 14 (3): 437- 444
FENG Yong-hua, HUANG Zhao-wei, ZHANG Yan, et al Research of numerical simulation of the snow icy phenomenon of the high-speed train bogie area[J]. Journal of Railway Science and Engineering, 2017, 14 (3): 437- 444
doi: 10.3969/j.issn.1672-7029.2017.03.002
18 MORSI S A, ALEXANDER A J An investigation of particle trajectories in two-phase systems[J]. Journal of Fluid Mechanics, 1972, 55 (2): 193- 208
doi: 10.1017/S0022112072001806
19 MELLOR M. Blowing snow cold regions science and engineering (Part III) [R]. Hampshire: U. S. Army Cold Regions Research and Engineering Laboratory, 1965.
20 NISHIMURA K, HUNT J C R Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 417: 77- 102
doi: 10.1017/S0022112000001014
21 KIND R J A critical examination of the requirements for model simulation of wind-induced erosion/ deposition phenomena such as snow drifting[J]. Atmospheric Environment, 1976, 10 (3): 219- 227
doi: 10.1016/0004-6981(76)90094-9
[1] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[2] 蔡路,李田,张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815.
[3] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.
[4] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[5] 牛纪强, 周丹, 梁习锋, 贾丽荣. 导流装置对受电弓非定常气动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(4): 752-760.
[6] 张捷, 肖新标, 王瑞乾, 金学松. 高速列车铝型材声振特性测试及等效建模[J]. 浙江大学学报(工学版), 2017, 51(3): 545-553.
[7] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[8] 陈大伟, 姚拴宝, 刘韶庆, 郭迪龙. 高速列车头型气动反设计方法[J]. 浙江大学学报(工学版), 2016, 50(4): 631-640.
[9] 刘峰, 姚松, 刘堂红, 张洁. 高速铁路隧道壁面气动压力实车试验分析[J]. 浙江大学学报(工学版), 2016, 50(10): 2018-2024.
[10] 毛杰, 郝志勇, 孙强, 郑旭, 马晓龙, 张强. 多物理场耦合激励下的高铁车内中频噪声计算[J]. 浙江大学学报(工学版), 2015, 49(2): 315-321.
[11] 罗乐,郑旭,吕义,郝志勇. 考虑受电弓系统的高速列车气动噪声分析[J]. 浙江大学学报(工学版), 2015, 49(11): 2179-2185.
[12] 刘星,邓见,郑耀,潘国峰. 高速列车受电弓空气动力学对弓网受流的影响[J]. J4, 2013, 47(3): 558-564.
[13] 刘俊飙 ,金心宇,董芳. 高铁列车通信中无线衰落分析[J]. J4, 2012, 46(9): 1580-1584.
[14] 计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.