Please wait a minute...
J4  2012, Vol. 46 Issue (10): 1764-1772    DOI: 10.3785/j.issn.1008-973X.2012.10.005
机械与能源工程     
软性磨粒流加工方法及近壁区域特性
计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春
浙江工业大学 特种装备制造与先进加工技术教育部重点实验室, 浙江省特种装备制造与先进加工技术
重点实验室,浙江 杭州 310014
Softness abrasive flow machining and characteristics of near wall area
JI Shi-ming, LI Chen, TAN Da-peng, ZHANG Li, FU You-zhi, WANG Ying-chun
Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education,
 Zhejiang Province Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology,
Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF  HTML
摘要:

为了解决模具细微结构化表面难以光整加工的问题,提出固液两相软性磨粒流(SAF)无工具精密加工方法.通过为结构化表面配以约束模块,以构建磨粒流湍流流道,利用软性磨粒流与被加工表面的“无缝”接触特性及壁面效应,实现模具表面的无工具无死角光整加工.以Nikuradse实验方法为理论依据,分析软性磨粒流中固体相在近壁区的运动学和力学特性,得到适用于软性磨粒流加工的摩擦系数公式.采用标准k-ε模型和欧拉多相流模型对软性磨粒流进行数学描述;利用压力耦合方程的半隐相容(SIMPLEC)算法,对不同入口速度时流道内的固体相压力分布进行数值分析研究.数值模拟结果表明,软性磨粒流固体相的压力衰减程度与入口速度成反比,并且固体相在流道内的运动轨迹呈无序状态.利用动态分析三维显示系统对流道内的颗粒运动轨迹进行实验研究.结果显示,固体颗粒运动轨迹呈无序漩涡状,符合湍流形态的运动规律.搭建软性磨粒流加工平台并进行加工实验.实验结果表明,采用软性磨粒流的加工方法能够使工件表面粗糙度达到61.8 nm.

Abstract:

A new no-tools precision finishing method based on solid-liquid two phase softness abrasive flow (SAF) was proposed in order to solve the problem of tiny scale structural surface finishing in mould manufacturing course. Restrained flow passage was constructed by setting restrained component for the machined surface. Because the turbulent effect of SAF can seamlessly contact machining surface, no-tools precision machining for tiny scale structural surface can be realized. Motion regulars of SAF were analyzed according to the Nikuradse experimental method, and friction coefficient formulas which were suited for SAF machining were obtained. Standard k-ε model and Euler multiple-phase model were used to make mathematical description of SAF, and flow passage pressure distribution with different inlet velocities was obtained by semi-implicit method for pressure linked equations consistent (SIMPLEC) algorithm. Numerical simulation results showed that the pressure attenuation of slid phase in flow passage was inversely proportional to inlet velocity, and motion trails of solid phase were disorderly and unsystematic. Particle motion trails were observed by dynamic analysis three-dimensional display system. Results of observation show that motion trails of solid phase are disorder vortexes, according with turbulent motion regularity. SAF experimental platform was constructed. Experimental results show that machined roughness of mould structural surface can be reduced to 61.8 nm.

出版日期: 2012-10-01
:  O 359  
基金资助:

国家自然科学基金资助项目(50875242,50905163);浙江省自然科学基金资助项目(Z107517,Y1090836).

通讯作者: 谭大鹏,男,讲师.     E-mail: tandapeng@zjut.edu.cn
作者简介: 计时鸣(1957—),男,教授,博导,从事先进加工技术的研究.E-mail: jishiming@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

计时鸣, 李琛, 谭大鹏, 张利, 付有志, 王迎春. 软性磨粒流加工方法及近壁区域特性[J]. J4, 2012, 46(10): 1764-1772.

JI Shi-ming, LI Chen, TAN Da-peng, ZHANG Li, FU You-zhi, WANG Ying-chun. Softness abrasive flow machining and characteristics of near wall area. J4, 2012, 46(10): 1764-1772.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2012.10.005        http://www.zjujournals.com/eng/CN/Y2012/V46/I10/1764

[1] BRINKSMEIER E. Polishing of structured molds [J]. CIRP Annals: Manufacturing Technology, 2004, 53(1): 247-250.
[2] 计时鸣,唐波,谭大鹏,等.结构化表面软性磨粒流精密光整加工方法及其磨粒流动力学数值分析[J].机械工程学报, 2010, 46(15): 178-184.
JI Shiming, TANG Bo, TAN Dapeng, et al. Structural surface softness abrasive flow precision finish machining and its abrasive flow dynamic numerical analysis [J]. Chinese Journal of Mechanical Engineering, 2010, 46(15): 178-184.
[3] 计时鸣,李琛,谭大鹏.基于Preston方程的软性磨粒流加工特性研究[J].机械工程学报, 2011, 47(17): 156-163.
JI Shiming, LI Chen, TAN Dapeng. Study on machinability of softness abrasive flow based on Preston equation [J]. Chinese Journal of Mechanical Engineering, 2011, 47(17): 156-163.
[4] 彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004, 40(4): 67-70.
PENG Xiaoqiang, DAI Yifan, LI Shengyi. Material removal model of magnetorheological finishing [J]. Chinese Journal of Mechanical Engineering, 2004, 40(4): 67-70.
[5] 孙希威,张飞虎,董申.磁流变抛光光学曲面的两级插补算法[J].光电工程,2006,33(2): 61-64.
SUN Xiwei, ZHANG Feihu, DONG Shen. Twostage interpolated algorithm for magnetorheological finishing optical curved face [J]. OptoElectronic Engineering, 2006, 33(2): 61-64.
[6] 戴一帆,张学成,李圣怡,等.确定性磁射流抛光技术[J].机械工程学报,2009, 45(5): 171-176.
DAI Yifan, ZHANG Xuecheng, LI Shengyi, et al. Deterministic magnetorheological jet polishing technology[J]. Chinese Journal of Mechanical Engineering, 2009, 45(5): 171-176.
[7] KURIYAGAWA T, SAEKI M, SYOJI K. Electrorheological fluidassisted polishing for small threedimensional parts [J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2002, 26(4): 370-380.
[8] KOHUT T. Surface finishing with abrasive flaw machining [J]. SME Technical Paper, 1989, 14(6): 35-43.
[9] LOVELESS T K, WILLIAMS K E, KAJURKER K P. A study of the effects of abrasive flow finishing on various machined surfaces [J]. Journal of Materials Processing Technology, 1994, 47(1/2): 133-151.
[10] 汤勇,周德明,杨钢,等.磨料流光整加工性研究[J].华南理工大学学报:自然科学版, 2001, 29(9): 17-19.
TANG Yong, ZHOU Deming, YANG Gang, et al. Machinability of abrasive flowing machining [J]. Journal of South China University of Technology: Natural Science, 2001, 29(9): 17-19.
[11] 汤勇,周德明,夏伟,等.磨料流加工壁面滑动特性的研究[J].华南理工大学学报:自然科学版,2001, 29(1): 34-36.
TANG Yong, ZHOU Deming, XIA Wei, et al. Some investigation on the characteristic of wall sliding in abrasive flow machining [J]. Journal of South China University of Technology: Natural Science, 2001, 29(1): 34-36.
[12] 计时鸣,张生昌,张宪,等.基于流场约束型液动磨粒流的表面光整加工方法:中国, 10067628.3 [P]. 2007-03-21.
JI Shiming, ZHANG Shengchang, ZHANG Xian, et al. Surface finishing methods based on the constraint hydraulic abrasive flow field: China, 10067628. 3 [P]. 2007-03-21.
[13] NIKURADSE J. Laws for flows in rough pipes [M]. Berlin: Vereins Deutscher Ingenieure, 1933.
[14] LAUNDER B E, SPALDING D B. Lecture in mathematical models of turbulence [M]. London: Academic Press, 1972: 172-175.
[15] 尹俊连,焦磊,仇性启,等.旋流喷嘴内部流场的数值模拟和实验研究[J].浙江大学学报:工学版,2009, 43(5): 968-972.
YIN Junlian, JIAO Lei, QIU Xingqi, et al. Numerical and experimental investigation of flow in swirling nozzle [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(5): 968-972.
[16] DU W, BAO X J, XU J, et al. Computational fluid dynamics (CFD) modeling of spouted bed: influence of frictional stress, maximum packing limit and coefficient of restitution of particles [J]. Chemical Engineering Science, 2006, 61(14): 4558-4570.
[17] FINNEMORE J E, FRANZINI J B. Fluid mechanics with engineering applications [M]. Beijing: China Machine Press, 2006: 258-261.
[18] 李国美,王跃社,亢力强.突扩圆管内液固两相流颗粒运动特性的DPM数值模拟[J].工程热物理学报, 2008, 29(12): 2061-2064.
LI Guomei, WANG Yueshe, KANG Liqiang. Numerical simulation on solid particle movement characters of liquidsolid tow phase flow in sudden expansion pipe by discrete particle model [J]. Journal of Engineering Thermophysics, 2008, 29(12): 2061-2064.
[19] 阮晓东,刘志皓,瞿建武.粒子图像测速技术在两相流测量中的应用研究[J].浙江大学学报:工学版, 2005, 39(6): 785-788.
RUAN Xiaodong, LIU Zhihao, QU Jianwu. Study on application of PIV technique in twophase flow measurement [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(6): 785-788.

[1] 杜军,魏正英,熊孝东,何威,唐一平. 纳米压印模具及膜厚对抗蚀剂填充特性的影响[J]. J4, 2012, 46(7): 1175-1181.
[2] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法的软性磨粒两相流场特性分析[J]. J4, 2011, 45(12): 2222-2228.
[3] 聂德明,林建忠. 模拟颗粒布朗运动的格子Boltzmann模型[J]. J4, 2009, 43(8): 1438-1442.