Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (6): 1232-1240    DOI: 10.3785/j.issn.1008-973X.2022.06.022
建筑与交通工程     
离散元模拟离心超重力场下的斜槽颗粒流
詹正书1,2(),赵宇1,2,梁腾1,2,*(),刘准1,2,王玮1,2
1. 浙江大学 建筑工程学院 岩土工程研究所,浙江 杭州 310058
2. 浙江大学 超重力研究中心,浙江 杭州 310058
Discrete element simulation of granular chute flows within centrifugal field
Zheng-shu ZHAN1,2(),Yu ZHAO1,2,Teng LIANG1,2,*(),Zhun LIU1,2,Wei WANG1,2
1. Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2492 KB)   HTML
摘要:

以非稳态斜槽颗粒流为切入点,利用离散元方法再现颗粒流在离心超重力场中的运动机制,以量化科里奥利效应对岩土体动力过程的影响.利用已发表的离心试验数据验证数值模型的可靠性;从宏观和细观尺度系统量化非稳态流中模型布置方向、斜槽倾角、超重力、斜槽底面粗糙度等试验参数对科里奥利效应的影响规律. 结果表明,在不同模型布置方向下,科里奥利力会大幅改变颗粒流的流态,科里奥利效应与斜槽倾角以及斜槽底面粗糙度正相关,但是科里奥利效应对超重力不敏感.研发抵消科里奥利效应的试验手段是岩土体动力灾变超重力离心模拟领域亟须解决的技术瓶颈之一.

关键词: 高速远程滑坡颗粒流科里奥利效应宏观流态细观流态    
Abstract:

The discrete element method was used to simulate the motion of granular flow in the centrifugal field. The unsteady chute granular flow was studied to quantify the influence of Coriolis effect on the kinetic process of model. The simulation results were validated against the published centrifuge testing. The influence of experimental parameters such as model layout, slope angle, g level and basement friction on Coriolis effect in unsteady flow were quantified systematically from macro and micro scales. Results showed that the non-trivial effects of the Coriolis force highly altered the status of the granular flow regardless of model layout. And Coriolis effect was positive related to the chute angle and basement friction. However, the effect of the Coriolis force was in-sensitive to g level. In the field of hypergravity to simulate the kinetic failure process of geotechnical infrastructure, the development of test methods to neutralize Coriolis effect is a technical bottleneck that needs to be solved.

Key words: rapid and long runout landslide    granular flow    Coriolis effect    macro flow pattern    micro flow pattern
收稿日期: 2021-10-27 出版日期: 2022-06-30
CLC:  P 694  
基金资助: 国家自然科学基金资助项目(51988101,52178359,52008368)
通讯作者: 梁腾     E-mail: zhanzhengshu@zju.edu.cn;tliang@zju.edu.cn
作者简介: 詹正书(1996—),男,硕士生,从事滑坡碎屑流研究. orcid.org/0000-0002-2548-9370. E-mail: zhanzhengshu@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
詹正书
赵宇
梁腾
刘准
王玮

引用本文:

詹正书,赵宇,梁腾,刘准,王玮. 离散元模拟离心超重力场下的斜槽颗粒流[J]. 浙江大学学报(工学版), 2022, 56(6): 1232-1240.

Zheng-shu ZHAN,Yu ZHAO,Teng LIANG,Zhun LIU,Wei WANG. Discrete element simulation of granular chute flows within centrifugal field. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1232-1240.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.06.022        https://www.zjujournals.com/eng/CN/Y2022/V56/I6/1232

图 1  斜槽模型布置方式及坐标系
图 2  DEM模拟颗粒在旋转坐标系下的运动轨迹
图 3  DEM模拟颗粒流模型概况
参数 符号/单位 数值
颗粒密度 ρ/(kg·m ?3) 2 650
颗粒直径 d /mm 3.76
接触刚度 k /(N·m ?1) 1.0×10 7
法向阻尼系数 α n 0.3
切向阻尼系数 α t 0.2
内摩擦角 μ 0.468
抗转动系数 μ r 0.1
表 1  颗粒材料接触参数
图 4  超重力颗粒流试验的DEM模拟复现
图 5  颗粒流质心运动时程
图 6  模型布置方式对颗粒流堆积剖面的影响
图 7  0.05 s时的颗粒流速度分布
图 8  不同模型布置方式对颗粒流惯性指数的影响
图 9  超重力、斜槽坡度和粗糙度对颗粒流质心运动和剖面的影响
图 10  惯性指数在颗粒流流向上的分布
1 程谦恭, 张倬元, 黄润秋 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007, 25 (1): 72- 84
CHENG Qian-gong, ZHANG Zhuo-yuan, HUANG Run-qiu Study on dynamics of rock avalanches: state of art report[J]. Journal of Mountain Science, 2007, 25 (1): 72- 84
doi: 10.3969/j.issn.1008-2786.2007.01.007
2 林棋文, 程谦恭, 李坤, 等. 高速远程滑坡碎屑化运动机理研究综述[J/OL]. 工程地质学报: 1-15 [2021-10-25]. https: //doi. org/10.13544/j. cnki. jeg. 2021-0035.
LIN Qi-wen, CHENG Qian-gong, LI Kun, et al. Review on fragmentation-related dynamics of rock avalanches [J/OL]. Journal of Engineering Geology: 1-15 [2021-10-25]. https://doi.org/10.13544/j.cnki.jeg.2021-0035.
3 王玉峰, 林棋文, 李坤, 等 高速远程滑坡动力学研究进展[J]. 地球科学与环境学报, 2021, 43 (1): 164- 181
WANG Yu-feng, LIN Qi-wen, LI Kun, et al Review on rock avalanche dynamics[J]. Journal of Earth Sciences and Environment, 2021, 43 (1): 164- 181
4 龙艳梅, 宋章, 王玉峰, 等 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质, 2022, 49 (1): 126- 136
LONG Yan-mei, SONG Zhang, WANG Yu-feng, et al An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology and Engineering Geology, 2022, 49 (1): 126- 136
5 宋东日, 周公旦, CHOI Clarence Edward, 等 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报, 2019, 41 (12): 2262- 2271
SONG Dong-ri, ZHOU Gong-dan, CHOI Clarence Edward, et al Scaling principles of debris flow modeling using geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (12): 2262- 2271
6 WOOD D M. Soil behaviour and critical state soil mechanics [M]. Cambridge: Cambridge University Press, 1990: 5-18.
7 CABRERA M A, WU W Experimental modelling of free-surface dry granular flows under a centrifugal acceleration field[J]. Granular Matter, 2017, 19: 78
doi: 10.1007/s10035-017-0764-z
8 BOWMAN E T, LAUE J, IMRE B, et al Experimental modelling of debris flow behaviour using a geotechnical centrifuge[J]. Canadian Geotechnical Journal, 2010, 47 (7): 742- 762
doi: 10.1139/T09-141
9 BOWMAN E T, TAKE W A, RAIT K L, et al Physical models of rock avalanche spreading behaviour with dynamic fragmentation[J]. Canadian Geotechnical Journal, 2012, 49 (4): 460- 476
doi: 10.1139/t2012-007
10 NG C W W, CHOI C E, KOO R C H, et al Dry granular flow interaction with dual-barrier systems[J]. Géotechnique, 2018, 68 (5): 386- 399
11 BRYANT S K, TAKE W A, BOWMAN E T, et al Physical and numerical modelling of dry granular flows under Coriolis conditions[J]. Géotechnique, 2015, 65 (3): 188- 200
12 CABRERA M A, WU W Space–time digital image analysis for granular flows[J]. International Journal of Physical Modelling in Geotechnics, 2017, 17 (2): 135- 143
doi: 10.1680/jphmg.16.00018
13 CABRERA M A, LEONARDI A, PENG C Granular flow simulation in a centrifugal acceleration field[J]. Géotechnique, 2019, 70 (10): 894- 905
14 郑光. 滑坡—碎屑流远程运动距离研究[D]. 成都: 成都理工大学, 2018: 2-3.
ZHENG Guang. Study on the long-runout distance of rock avalanche [D]. Chengdu: Chengdu University of Technology, 2018: 2-3.
15 胡厚田, 刘涌江, 邢爱国, 等. 高速远程滑坡流体动力学理论的研究[M]. 成都: 西南交通大学出版社, 2003: 1-2.
16 WOOD D M. Geotechnical Modelling [M]. London: Spon Press, 2004: 14-17.
17 常胜. 离心模拟超重力下降雨轨迹理论及应用研究[D]. 杭州: 浙江大学, 2020: 17-18.
CHANG Sheng. Research on theory and application of rainfall Trajectory under Supergravity simulated by centrifuge [D]. Hangzhou: Zhejiang University, 2020: 17-18.
18 刘小川. 降雨诱发非饱和土边坡浅层失稳离心模型试验及分析方法[D]. 杭州: 浙江大学, 2017: 55-58.
LIU Xiao-chuan. Centrifugal modelling and analysis of rainfall-induced shallow failure in unsaturated soil slope [D]. Hangzhou: Zhejiang University, 2017: 55-58.
19 AI J, CHEN J F, ROTTER J M, et al Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206 (3): 269- 282
doi: 10.1016/j.powtec.2010.09.030
20 蒋明镜, 李秀梅, 孙渝刚, 等 考虑颗粒抗转动的砂土双轴试验离散元模拟[J]. 岩土力学, 2019, 30 (Suppl.2): 514- 517
JIANG Ming-jing, LI Xiu-mei, SUN Yu-gang, et al Discrete element simulation of biaxial compression test considering rolling resistance[J]. Rock and Soil Mechanics, 2019, 30 (Suppl.2): 514- 517
21 ROUX J N, COMBE G Quasistatic rheology and the origins of strain[J]. Comptes Rendus Physique, 2002, 3 (2): 131- 140
doi: 10.1016/S1631-0705(02)01306-3
22 CAMPBELL C S Granular shear flows at the elastic limit[J]. Journal of Fluid Mechanics, 2002, 465: 261- 291
doi: 10.1017/S002211200200109X
23 ZHOU G G D, NG C W W, SUN Q C A new theoretical method for analyzing confined dry granular flows[J]. Landslides, 2014, 11: 369- 384
doi: 10.1007/s10346-013-0397-1
24 CRUZ F D, EMAM S, PROCHNOW M, et al Rheophysics of dense granular materials: discrete simulation of plane shear flows[J]. Physical Review E, 2005, 72 (2): 021309
doi: 10.1103/PhysRevE.72.021309
25 MIDI G On dense granular flows[J]. The European Physical Journal E, 2004, 14: 341- 364
doi: 10.1140/epje/i2003-10153-0
26 MINENEH A E. High stress flow behaviour and constitutive modeling of dry granular materials [D]. Edmonton: University of Alberta, 2013: 21-56.
27 周公旦, 孙其诚, 崔鹏 泥石流颗粒物质分选机理和效应[J]. 四川大学学报: 工程科学版, 2013, 45 (1): 28- 36
ZHOU Gong-dan, SUN Qi-cheng, CUI Peng Study on the mechanisms of solids segregation in granular debris flows[J]. Journal of Sichuan University: Engineering Science Edition, 2013, 45 (1): 28- 36
[1] 李晓田,王楚昕,于永强. 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报(工学版), 2019, 53(12): 2264-2270.
[2] 林呈祥,凌道盛,钟世英. 颗粒流数值模拟在月壤岩土问题研究中的应用概况[J]. 浙江大学学报(工学版), 2015, 49(9): 1679-1691.
[3] 谭骏华, 罗坤, 樊建人. 软球模型在颗粒流全尺度模拟中的验证和分析[J]. 浙江大学学报(工学版), 2015, 49(2): 344-350.
[4] 尹小涛, 丁卫华, 李春光, 王水林. 中等应变速率对砂岩破坏形态和力学性质的影响[J]. J4, 2010, 44(10): 1944-1949.
[5] 罗勇 龚晓南 吴瑞潜. 颗粒流模拟和流体与颗粒相互作用分析[J]. J4, 2007, 41(11): 1932-1936.
[6] 武锦涛 陈纪忠 阳永荣. 移动床中颗粒运动的微观分析[J]. J4, 2006, 40(5): 864-868.