Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1543-1555    DOI: 10.3785/j.issn.1008-973X.2024.08.002
机械工程、能源工程     
仿生六足折纸机器人结构设计与运动分析
曹东兴1,2(),贾艳超2,3,郭翔鹰1,2,毛佳佳1,2
1. 北京工业大学 数学统计学与力学学院,北京 100124
2. 北京工业大学 机械结构非线性振动与强度北京市重点实验室,北京 100124
3. 北京工业大学 机械与能源工程学院,北京 100124
Structure design and motion analysis of bionic hexapod origami robot
Dongxing CAO1,2(),Yanchao JIA2,3,Xiangying GUO1,2,Jiajia MAO1,2
1. School of Mathematics Statistics and Mechanic, Beijing University of Technology, Beijing 100124, China
2. Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, Beijing University of Technology, Beijing 100124, China
3. School of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
 全文: PDF(3603 KB)   HTML
摘要:

针对现有折纸机器人组成结构单一,运动不够灵活的问题,将折纸结构与多足机器人设计相结合,耦合三浦折纸和六折痕折纸,提出新型的仿螃蟹六足折纸机器人设计方案,扩展了折纸机器人的运动构型,提升了折纸机器人的运动灵活性. 在面对称假设下,该机器人单足具有2个自由度,此时将机器人腿部顶点等效为关节,轴线折痕等效为连杆,建立机器人腿部的平面连杆等效模型,并以折面夹角为运动变量,通过仿真计算得出机器人足端的理论运动范围. 利用楔形面板技术对折面增厚并避免相邻折面发生物理干涉,建模得到折纸仿螃蟹六足机器人的三维模型. 基于平面连杆的等效模型,分析折面夹角与足端运动之间的联系,设计确定机器人的足端运动轨迹与运动步态. 利用3D打印技术设计并制作折纸仿生六足机器人试验样机,基于STM32单片机控制实现了机器人三横向角步态运动. 结果表明,该折纸仿生机器人可以实现平面构型到仿螃蟹构型的转换,在6条腿的协同运动下,机器人可以平稳地左右横向移动.

关键词: 六足机器人仿生六折痕折纸三浦折纸运动分析    
Abstract:

A new design scheme of crab-like hexapod origami robot was proposed by combining the origami structure with the multi-legged robot design and coupling Miura origami and six-fold origami aiming at the problems that the existing origami robots have a single structure and insufficient flexibility in movement. The motion configuration of the origami robot was expanded, and the motion flexibility of the origami robot was improved. Each leg of the robot has two degrees of freedom under the symmetry hypothesis. The vertices of the robot legs were treated as joints, and the crease lines were regarded as links. A planar link equivalent model of the robot legs was established with the folding angle as the motion variable. The theoretical range of motion for the robot’s foot was determined through simulation calculations. Then tapered panel technique was utilized to thicken the folding surfaces and prevent physical interference between adjacent folding surfaces. A three-dimensional model of the origami crab-like hexapod robot was constructed. The relationship between the folding angle and foot motion was analyzed based on the equivalent model of planar links, and the foot motion trajectory and gait of the robot were designed. The experimental prototype of origami bionic hexapod robot was designed and manufactured by using 3D printing technology, and the lateral movement of the robot was realized based on STM32 microcontroller control. Results show that the origami bio-inspired robot can realize the conversion from plane configuration to a crab-like configuration. The robot can move smoothly left and right under the coordinated movement of six legs.

Key words: hexapod robot    bionics    six-fold origami    Miura origami    kinematics analysis
收稿日期: 2024-04-01 出版日期: 2024-07-23
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(U2241264,11972051).
作者简介: 曹东兴(1978—),男,教授,博导,从事非线性动力学、折纸机器人的研究. orcid.org/0000-0001-9310-2345. E-mail:caostar@bjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曹东兴
贾艳超
郭翔鹰
毛佳佳

引用本文:

曹东兴,贾艳超,郭翔鹰,毛佳佳. 仿生六足折纸机器人结构设计与运动分析[J]. 浙江大学学报(工学版), 2024, 58(8): 1543-1555.

Dongxing CAO,Yanchao JIA,Xiangying GUO,Jiajia MAO. Structure design and motion analysis of bionic hexapod origami robot. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1543-1555.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.002        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1543

图 1  六足折纸机器人的折痕图与折叠构型
图 2  三浦折纸
图 3  六折痕折纸
图 4  折纸机器人的双足折叠
图 5  各顶点的等效运动学模型
图 6  单腿的运动学模型
图 7  三浦折纸及折痕等效连杆
图 8  不同三浦折纸的折痕设计夹角下,折痕$ {O'_1}{A_1} $、$ {O'_1}{E_1} $的夹角随二面角$ {\eta _1} $的变化
图 9  六折痕折纸及折痕等效连杆
图 10  不同六折痕折纸折痕设计夹角下,折痕$ {O'_2}{A_2} $、$ {O'_2}{D_2} $的夹角$ \varphi_{2} $随二面角$ \eta_{2} $和$ \eta_{3} $的变化
图 11  一对折纸腿的空间构型及单腿折痕等效连杆
图 12  折纸机器人的足端运动范围
图 13  楔形面板技术
图 14  一对折纸腿厚板模型
图 15  六足折纸机器人的三维模型
图 16  连接及驱动部分
图 17  折纸机器人的实际足端运动范围
图 18  二面角$ {\eta '_2} $随二面角$ {\eta '_1} $以不同比率变化时相应的足端轨迹
图 19  单个周期内折纸腿折面夹角变化与足端轨迹
图 20  减小机器人步距后的足端轨迹
图 21  增大机器人抬腿高度后的足端轨迹
图 22  六足机器人的简化模型
图 23  六足机器人的横向三角步态
图 24  六足机器人的横向三角步态仿真
图 25  行走过程中机身垂直地面方向位移
图 26  六足折纸机器人的样机
参数数值参数数值
$l_{{O_0}{O_1}}$/mm75α1/ (°)30
$l_{{O_1}{O_2}} $/mm55α2/ (°)45
$l_{{O_2}{O_3}} $/mm70α3/ (°)45
$l_{{O_3}{O_4}} $/mm110
表 1  六足折纸机器人的设计参数
图 27  不同控制信号下的足端轨迹
图 28  机器人的横向移动
1 CHEN Y, FENG H, MA J, et al Symmetric waterbomb origami[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2016, 472 (2190): 20150846
2 李笑, 李明 折纸及其折痕设计研究综述[J]. 力学学报, 2018, 50 (3): 467- 476
LI Xiao, LI Ming A review of origami and its crease design[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (3): 467- 476
3 方虹斌, 吴海平, 刘作林, 等 折纸结构和折纸超材料动力学研究进展[J]. 力学学报, 2022, 54 (1): 1- 38
FANG Hongbin, WU Haiping, LIU Zuolin, et al Advances in the dynamics of origami structures and origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (1): 1- 38
4 陈焱, 顾元庆 折纸运动学综述[J]. 力学进展, 2023, 53 (1): 154- 197
CHEN Yan, GU Yuanqing Review on origami kinematics[J]. Advances in Mechanics, 2023, 53 (1): 154- 197
5 DAI J S, JONES J R Mobility in metamorphic mechanisms of foldable/erectable kinds[J]. Journal of Mechanical Design, 1999, 121 (3): 375- 382
doi: 10.1115/1.2829470
6 DAI J S, JONES J R Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2002, 216 (10): 959- 970
doi: 10.1243/095440602760400931
7 DAI J S, JONES J R Matrix representation of topological changes in metamorphic mechanisms[J]. Journal of Mechanical Design, 2005, 127 (4): 837- 840
doi: 10.1115/1.1866159
8 冯慧娟, 马家耀, 陈焱 广义Waterbomb折纸管的刚性折叠运动特性[J]. 机械工程学报, 2020, 56 (19): 143- 159
FENG Huijuan, MA Jiayao, CHEN Yan Rigid folding of generalized Waterbomb origami tubes[J]. Journal of Mechanical Engineering, 2020, 56 (19): 143- 159
doi: 10.3901/JME.2020.19.143
9 WANG G, WANG J, YAO Y, et al Research on programmable spatial capture mechanism and its motion characteristics based on origami principle[J]. Mechanism and Machine Theory, 2023, 181: 105179
doi: 10.1016/j.mechmachtheory.2022.105179
10 FELTON S, TOLLEY M, DEMAINE E, et al A method for building self-folding machines[J]. Science, 2014, 345 (6197): 644- 646
doi: 10.1126/science.1252610
11 KAMRAVA S, MOUSANEZHAD D, FELTON S M, et al Programmable origami strings[J]. Advanced Materials Technologies, 2018, 3 (3): 1700276
doi: 10.1002/admt.201700276
12 RUS D, SUNG C Spotlight on origami robots[J]. Science Robotics, 2018, 3 (15): eaat0938
doi: 10.1126/scirobotics.aat0938
13 冯慧娟, 杨名远, 姚国强, 等 折纸机器人[J]. 中国科学: 技术科学, 2018, 48 (12): 1259- 1274
FENG Huijuan, YANG Mingyuan, YAO Guoqiang, et al Origami robots[J]. Scientia Sinica Technologica, 2018, 48 (12): 1259- 1274
doi: 10.1360/N092018-00213
14 FAAL S G, CHEN F, TAO W, et al Hierarchical kinematic design of foldable hexapedal locomotion platforms[J]. Journal of Mechanisms and Robotics, 2016, 8 (1): 011005
doi: 10.1115/1.4030468
15 江新阳, 许勇, 王艳, 等 基于折纸机构设计的新型行走机器人[J]. 机械传动, 2021, 45 (5): 66- 74
JIANG Xinyang, XU Yong, WANG Yan, et al Novel walking robot based on the design of origami mechanism[J]. Journal of Mechanical Transmission, 2021, 45 (5): 66- 74
16 GU Y, WEI G, CHEN Y Thick-panel origami cube[J]. Mechanism and Machine Theory, 2021, 164: 104411
doi: 10.1016/j.mechmachtheory.2021.104411
17 PENG R, CHIRIKJIAN G S A methodology for thick-panel origami pattern design[J]. Mechanism and Machine Theory, 2023, 189: 105423
doi: 10.1016/j.mechmachtheory.2023.105423
18 EDMONDSON B, LANG R, MORGAN M, et al Thick rigidly foldable structures realized by an offset panel technique[J]. Origami6: I Mathematics, 2015, 1: 149- 161
19 CHEN Y, PENG R, YOU Z Origami of thick panels[J]. Science, 2015, 349: 396- 400
doi: 10.1126/science.aab2870
20 徐小云, 颜国正, 丁国清 微型六足仿生机器人及其三角步态的研究[J]. 光学精密工程, 2002, 10 (4): 392- 396
XU Xiaoyun, YAN Guozheng, DING Guoqing Research on miniature hexapod bio-robot and its tri pod gait[J]. Optics and Precision Engineering, 2002, 10 (4): 392- 396
21 刘连蕊, 张泽, 高建华 六足机器人横向行走步态研究[J]. 浙江理工大学学报, 2011, 28 (2): 225- 229
LIU Lianrui, ZHANG Ze, GAO Jianhua Signal processing method of the laser heterodyne interferometry based on DSP[J]. Journal of Zhejiang SciTech University, 2011, 28 (2): 225- 229
[1] 王砚麟,王克义,王奎成,莫宗骏,王璐莹. 仿肌肉绳索驱动下肢康复机器人系统使用安全性评价[J]. 浙江大学学报(工学版), 2022, 56(1): 168-177.
[2] 刘翔宇,隗海林,钱志辉,任雷. 基于多坡度运动的岩羊垂直地反力特征[J]. 浙江大学学报(工学版), 2021, 55(9): 1668-1675.
[3] 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展[J]. 浙江大学学报(工学版), 2021, 55(2): 229-243.
[4] 云忠,温猛,罗自荣,陈龙. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.
[5] 王扬威,范增,赵东标,刘凯. 基于Hopf振荡器的仿生机器魟鱼胸鳍波形控制算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1354-1362.
[6] 云忠,温猛,蒋毅,陈龙,冯龙飞. 仿生蝠鲼胸鳍摆动推进机构设计与水动力分析[J]. 浙江大学学报(工学版), 2019, 53(5): 872-879.
[7] 贺永,高庆,刘安,孙苗,傅建中. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版), 2019, 53(3): 407-419.
[8] 牟介刚,刘剑,谷云庆,代东顺,郑水华,吴登昊. 仿生蜗壳离心泵内部非定常流动特性分析[J]. 浙江大学学报(工学版), 2016, 50(5): 927-933.
[9] 陈伟海,刘涛,王建华,任冠佼,吴星明. 仿生六足机器人传感信息处理及全方向运动控制[J]. 浙江大学学报(工学版), 2015, 49(3): 430-438.
[10] 姜飞龙,陶国良,刘昊,赵勇,李庆伟. 基于气动肌肉仿人下肢动力学[J]. 浙江大学学报(工学版), 2015, 49(11): 2054-2062.
[11] 杨鹏程,罗尧治,沈雁彬. 基于功能单元的主动结构形状的仿生控制[J]. 浙江大学学报(工学版), 2015, 49(11): 2119-2127.
[12] 朱雅光, 金波, 李伟. 基于自适应-模糊控制的六足机器人单腿柔顺控制[J]. 浙江大学学报(工学版), 2014, 48(8): 1419-1426.
[13] 朱雅光,金波,李伟,李世通. 基于目标工作空间的六足机器人腿部结构优化[J]. 浙江大学学报(工学版), 2014, 48(5): 770-776.
[14] 程吉祥,顾新建,代风,刘征. 基于BioTRIZ的产品创新设计过[J]. J4, 2014, 48(1): 35-41.
[15] 金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.