Please wait a minute...
J4  2013, Vol. 47 Issue (5): 768-774    DOI: 10.3785/j.issn.1008-973X.2013.05.005
机械工程     
具有半球形足端的六足机器人步态修正算法
金波,陈诚,李伟
浙江大学 机械工程学系,浙江 杭州 310027 
Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
JIN Bo, CHEN Cheng, LI Wei
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China     
 全文: PDF  HTML
摘要:

针对六足机器人步行时由于半球形足端滚动影响造成的机器人躯体轨迹偏差问题,提出一种步态修正算法.指出大半径半球形结构作为六足机器人的足端设计方案所具备的优势及其在支撑相中存在的足端滚动问题.通过提出理想立足点的概念,对三维空间内机器人单腿运动学模型进行修正,对理想立足点与实际立足点之间的偏差量进行分析,建立全方位步行时理想立足点与单腿各关节转角之间的运动学正/逆解关系.通过仿真对比分析修正前后单腿根关节运动轨迹,验证修正算法的有效性.实验结果表明,修正算法既能够更好地避免足端与地面产生相对滑动从而显著改善机器人步行时的方向偏离问题,又能够在一定程度上降低系统能耗.

Abstract:

Considered the body misplaced problem caused by the rolling effect of semi-round rigid feet during hexapod robots walking period, a gait correction algorithm was established. The main benefits of the large radius semi-round structure were proposed, while the rolling effect during the supporting phase was illustrated. The concept of ideal foothold was put forward, with the 3D deviation between the ideal foothold and real foothold deduced by correcting the single leg kinematic model. The forward/inverse kinematic solutions between the ideal foothold and the joints-angular vectors were formulated. The root joint trajectory of single leg generated in simulation environment verifies the effectiveness of the algorithm. A series of walking experiments results show that the correction algorithm could improve  the walking orientation deviation problem and the energetic cost obviously by avoiding foot slippage phenomenon as much as possible.

出版日期: 2013-05-01
:     
作者简介: 金波(1971-), 男, 副教授, 从事电液控制、智能机器人控制、深海机电装备研究. E-mail: bjin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

金波,陈诚,李伟. 具有半球形足端的六足机器人步态修正算法[J]. J4, 2013, 47(5): 768-774.

JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet. J4, 2013, 47(5): 768-774.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.05.005        http://www.zjujournals.com/eng/CN/Y2013/V47/I5/768

[1] WETTERGREEN D, THORPE C, WHITTAKER R. Exploring mount erebus by walking robot [J]. Robotics and Autonomous Systems, 1993,11: 171-185.
[2] MOSHER R S. Test and evaluation of walking truck [C]∥ Cornell Aeronautical Lab/ISTVS Off-road Mobility Research Symposium. Washington DC:\
[s.n.\] 1968.
[3] PFEIFFER F, ELTZE J, WEIDEMANN H J. The TUM-walking machine [J]. Intelligent Automation and Soft Computing, 1995, 1(3): 307-323.
[4] WARDRON K J, MCGHEE R B. The adaptive suspension vehicle [J]. IEEE Control Systems Magazine, 1986:7-12.
[5] ILG W, ALBIEZ J, JEDELE H, et al. Adaptive periodic movement control for the four legged walking machine BISAM [C]∥ Proceedings of the 1999 IEEE International Conference on Robotics & Automation. Detroit, Michigan: IEEE, 1999:2354-2359.
[6] HIROSE S, YOKOTA S, TORII A, et al. Quadruped walking robot centered demining system—development of TITAN-IX and its operation [C]∥ Proceedings of the IEEE international conference on robotics and automation.\
[s.l.\] IEEE, 2005:1296-1302.
[7] GALVEZ J A, ESTREMERA J, GONZALEZ P. A new legged-robot configuration for research in force distribution [J]. Mechatronics, 2003, 13: 907-932.
[8] FIELDING M R, DAMAREN C J, DUNLOP R. HAMLET: Force/position control hexapod walker—design and systems[C]∥ Proceedings of the IEEE Conference on Control Applications. Mexico:\
[s.n.\], 2001.
[9] 哈尔滨工程大学. 具有力感知能力的仿人足底结构. 中国. 2006200220178 [P]. 2006-11-17 [2007-10-31].
[10] 清华大学. 仿生踝关节: 中国. 2007101781380 [P]. 2007-11-27.[2008-04-16].
[11] GONZALEZ P, COBANO J A, GARCIA E, et al. A six-legged robot-based system for humanitarian demining missions [J]. Mechatronics, 2007,17: 417-430.
[12] GUARDABRAZO T A, JIMENEZ M A, Gonzalez P. Analysing and solving body misplacement problems in walking robots with round rigid feet [J]. Robotics and Autonomous Systems, 2006,54: 256-264.
[13] ERDEN M S, LEBLEBICIOGLU K. Analysis of wave gaits for energy efficiency [J].Auton Robot, 2007, SMC-9(4):213-230.

[1] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[2] 李林,陈家旺,顾临怡,王峰. 轴向柱塞泵/马达变量阀配流机构[J]. J4, 2014, 48(1): 29-34.
[3] 陈钊,余锋,陈婷婷. 基于日志结构的闪存均衡回收策略[J]. J4, 2014, 48(1): 92-99.
[4] 蒋湛,姚晓明,林兰芬. 基于特征自适应的本体映射方法[J]. J4, 2014, 48(1): 76-84.
[5] 陈迪仕 ,张宇,李平. 微小型无人直升机地面效应建模[J]. J4, 2014, 48(1): 154-160.
[6] 霍新新,褚金奎,韩冰峰,姚斐.  基于多个压电换能器的接口电路[J]. J4, 2013, 47(11): 2038-2045.
[7] 杨鑫,许端清,杨冰. 基于不规则性的并行计算方法[J]. J4, 2013, 47(11): 2057-2064.
[8] 王玉强,张宽地,陈晓东. 胶黏钢-混凝土组合梁的界面行为数值分析[J]. J4, 2013, 47(9): 1593-1598.
[9] 彭勇,徐小剑. 集料分布对沥青混合料劈裂强度影响数值分析[J]. J4, 2013, 47(7): 1186-1191.
[10] 崔何亮, 张丹, 施斌.  布里渊分布式传感的空间分辨率及标定方法[J]. J4, 2013, 47(7): 1232-1237.
[11] 伍晓榕,裘乐淼,张树有,孙良峰,郭传龙. 模糊语境下的复杂系统关联FMEA方法[J]. J4, 2013, 47(5): 782-789.
[12] 钟世英, 吴晓君, 蔡武军, 凌道盛, 蒋祝金, 王顺玉. 月面软着陆足垫水平拖曳模型试验装置研制[J]. J4, 2013, 47(3): 465-471.
[13] 袁幸,朱永生,张优云,洪军,祁文昌. 基于正反问题的滚动轴承损伤程度评估[J]. J4, 2012, 46(11): 1960-1967.
[14] 杨飞,朱株,龚小谨,刘济林. 基于三维激光雷达的动态障碍实时检测与跟踪[J]. J4, 2012, 46(9): 1565-1571.
[15] 王鹿军, 吕征宇. 基于LSSVM的电梯交通模式的模糊识别[J]. J4, 2012, 46(7): 1333-1338.