自动化技术、计算机技术 |
|
|
|
|
基于Hopf振荡器的仿生机器魟鱼胸鳍波形控制算法 |
王扬威1,2( ),范增2,赵东标2,刘凯2 |
1. 东北林业大学 机电工程学院,黑龙江 哈尔滨 150040 2. 南京航空航天大学 机电学院,江苏 南京 210016 |
|
Waveform control algorithm for pectoral fin of robotic stingray based on Hopf oscillator |
Yang-wei WANG1,2( ),Zeng FAN2,Dong-biao ZHAO2,Kai LIU2 |
1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China 2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
引用本文:
王扬威,范增,赵东标,刘凯. 基于Hopf振荡器的仿生机器魟鱼胸鳍波形控制算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1354-1362.
Yang-wei WANG,Zeng FAN,Dong-biao ZHAO,Kai LIU. Waveform control algorithm for pectoral fin of robotic stingray based on Hopf oscillator. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1354-1362.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.07.015
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I7/1354
|
1 |
TRIANTAFYLLOU M S, TRIANTAFYLLOU G S An efficient swimming machine[J]. Scientific American, 1995, 272 (3): 64- 70
doi: 10.1038/scientificamerican0395-64
|
2 |
BARRETT D S, TRIANTAFYLLOU M S, YUE D K P, et al Drag reduction in fish-like locomotion[J]. Journal of Fluid Mechanics, 2000, 392 (392): 183- 212
|
3 |
WEI Q P, WANG S, DONG X, et al Design and kinetic analysis of a biomimetic underwater vehicle with two undulating long-fins[J]. Acta Automatica Sinica, 2013, 39 (8): 1330- 1338
doi: 10.1016/S1874-1029(13)60049-X
|
4 |
NIU X, XU J, REN Q, et al Locomotion learning for an anguilliform robotic fish using central pattern generator approach[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (9): 4780- 4787
doi: 10.1109/TIE.2013.2288193
|
5 |
SFAKIOTAKIS M, LANE D M, DAVIES J B C Review of fish swimming modes for aquatic locomotion[J]. IEEE Journal of Oceanic Engineering, 1999, 24 (2): 237- 252
doi: 10.1109/48.757275
|
6 |
郑浩峻, 张秀丽, 李铁民, 等 基于CPG原理的机器人运动控制方法[J]. 高技术通讯, 2003, 13 (7): 64- 68 ZHENG Hao-jun, ZHANG Xiu-li, LI Tie-min, et al CPG-based methods for motion control of robot[J]. High Technology Letters, 2003, 13 (7): 64- 68
doi: 10.3321/j.issn:1002-0470.2003.07.014
|
7 |
WYART C, BENE F D, WARP E, et al Optogenetic dissection of a behavioral module in the vertebrate spinal cord[J]. Nature, 2009, 461 (7262): 407- 410
doi: 10.1038/nature08323
|
8 |
IJSPEERT A J Central pattern generators for locomotion control in animals and robots: a review[J]. Neural Netw, 2008, 21 (4): 642- 653
doi: 10.1016/j.neunet.2008.03.014
|
9 |
TRAN D T, KOO I M, LEE Y H, et al Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network[J]. Robotics and Autonomous Systems, 2014, 62 (10): 1497- 1516
doi: 10.1016/j.robot.2014.05.011
|
10 |
ZHOU C, LOW K H. Kinematic modeling framework for biomimetic undulatory fin motion based on coupled nonlinear oscillators [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 934-939.
|
11 |
ZHOU C, LOW K H. Optimization of swimming locomotion for fish robots with multi-actuation [C] // IEEE International Conference on Robotics and Biomimetics. Karon Beach, Phuket, Thailand: IEEE, 2011: 2120-2125.
|
12 |
YU J, WANG M, TAN M, et al Three-dimensional swimming[J]. IEEE Robotics and Automation Magazine, 2011, 18 (4): 47- 58
doi: 10.1109/MRA.2011.942998
|
13 |
MA Z W, ZHOU H, WANG G M, et al A bio-inspired strategy for robotic fish swimming in unsteday flows[J]. Applied Mechanics and Materials, 2013, 341-342: 754- 759
doi: 10.4028/www.scientific.net/AMM.341-342
|
14 |
高琴, 王哲龙, 赵红宇 基于Hopf振荡器实现的蛇形机器人的步态控制[J]. 机器人, 2014, 36 (6): 688- 696 GAO Qin, WANG Zhe-long, ZHAO Hong-yu Gait control for a snake robot based on Hopf oscillator model[J]. Robot, 2014, 36 (6): 688- 696
|
15 |
高琴, 王哲龙, 胡卫建, 等 基于振荡器模型的蛇形机器人的步态仿真[J]. 系统仿真学报, 2015, 27 (6): 1374- 1380 GAO Qin, WANG Zhe-long, HU Wei-jian, et al Gait simulation of snake robot based on CPG method[J]. Journal of System Simulation, 2015, 27 (6): 1374- 1380
|
16 |
HU Y, ZHANG S, LIANG J, et al. Development and CPG-based control of a biomimetic robotic fish with advanced underwater mobility [C] // IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 813-818.
|
17 |
WANG G, CHEN X, HAN S K Central pattern generator and feedforward neural network-based self-adaptive gait control for a crab-like robot locomoting on complex terrain under two reflex mechanisms[J]. International Journal of Advanced Robotic Systems, 2017, 14 (4): 1- 13
|
18 |
TANGORRA J L, ESPOSITO C J, LAUDER G V. Biorobotic fins for investigations of fish locomotion [C] // IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009: 2120-2125.
|
19 |
BUCHLI J, IJSPEERT A J. Distributed central pattern generator model for robotics application based on phase sensitivity analysis [C] // Biologically Inspired Approaches to Advanced Information Technology: 1st International Workshop (BioADIT 2004). Berlin, Germany: Springer, 2004: 333--349.
|
20 |
HE J, ZHANG Y H Experimental investigation to the kinematics of a blue spotted ray like underwater propulsor[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6 (15): 2799- 2806
doi: 10.19026/rjaset.6.3788
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|