Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 872-879    DOI: 10.3785/j.issn.1008-973X.2019.05.007
计算机与控制工程     
仿生蝠鲼胸鳍摆动推进机构设计与水动力分析
云忠(),温猛,蒋毅,陈龙,冯龙飞
中南大学 机电工程学院,湖南 长沙 410083
Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray
Zhong YUN(),Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG
College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
 全文: PDF(1578 KB)   HTML
摘要:

为了提高水下无人航行器推进系统效率,设计仿生蝠鲼胸鳍摆动推进机构及其摆动形式. 在研究蝠鲼胸鳍运动机理的基础上,设计摆动幅值与急回系数相互解耦的曲轴联合曲柄摆杆机构,以实现仿生胸鳍的特定摆动形式. 推导并建立仿生胸鳍的鳍面运动方程,利用数值仿真分析单侧胸鳍在该摆动形式下的水动力特性,根据设定的推进性能评价指标说明该摆动形式相对正弦摆动形式的优越性. 通过实验验证装置的前进、转向等运动性能,分析胸鳍摆动幅值、频率与运动速度的关系. 结果表明,在特定的摆动形式下,该仿生胸鳍摆动推进机构能够实现水下无人航行器的前进、转向等预定运动,满足基本推进要求.

关键词: 仿生蝠鲼胸鳍摆动推进数值仿真性能分析Fluent    
Abstract:

A bionic pectoral fin oscillation propulsion mechanism of manta ray and its swing mode were designed to improve the propulsive efficiency of unmanned undersea vehicle (UUV). A crankshaft joint crank rocker mechanism, which achieved mutual decoupling between swing amplitude and jerk factor, was designed to achieve the specific swing mode of the bionic pectoral fin, based on the study of the pectoral fin movement mechanism of manta rays. The motion equation of the bionic pectoral fin was derived and established, and the hydrodynamic performance of unilateral pectoral fin in the swing mode was analyzed by numerical simulation, and the superiority of this swing mode relative to the sine swing mode was verified according to the set propulsion performance evaluation index. The advancement and steering performance of the device was verified by the experiments, and the relationship between the amplitude and frequency of the pectoral fin swing as well as the speed of the device was analyzed. Experimental results showed that the bionic pectoral fin oscillation propulsion mechanism can realize the predetermined movement of UUV, such as advancement and steering, and meet the basic propulsion requirements.

Key words: bionic manta ray    pectoral fin oscillation propulsion    numerical simulation    performance analysis    Fluent
收稿日期: 2018-03-30 出版日期: 2019-05-17
CLC:  Q 35  
作者简介: 云忠(1971—),男,博导,从事水下无人推进系统研究. orcid.org/0000-0003-4455-5967. E-mail: yunzhong@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
云忠
温猛
蒋毅
陈龙
冯龙飞

引用本文:

云忠,温猛,蒋毅,陈龙,冯龙飞. 仿生蝠鲼胸鳍摆动推进机构设计与水动力分析[J]. 浙江大学学报(工学版), 2019, 53(5): 872-879.

Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.05.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I5/872

图 1  蝠鲼胸鳍运动概念图
图 2  蝠鲼体型比例尺寸
图 3  仿生蝠鲼胸鳍摆动推进机构简图
图 4  曲柄机构运动关系示意图
图 5  胸鳍翼展面运动序列
图 6  胸鳍摆动仿真所采用的计算域网格配置
图 7  胸鳍拍动时上表面不同时刻压力云图
图 8  水下运动时右侧胸鳍受力示意图
图 9  胸鳍摆动水动力仿真曲线
图 10  胸鳍水动力参数随摆动频率的变化曲线
图 11  仿生蝠鲼推进装置实验现场情况
图 12  理论输入转矩/功率与曲轴转速的关系
图 13  装置前进游动的运动序列
图 14  装置转向游动的运动序列
图 15  装置速度随胸鳍摆动频率变化曲线
1 王扬威, 王振龙, 李健 仿生机器鱼研究进展及发展趋势[J]. 机械设计与研究, 2011, 27 (2): 22- 25
WANG Yang-wei, WANG Zhen-long, LI Jian Research development and tendency of biomimetic robot fish[J]. Machine Design and Research, 2011, 27 (2): 22- 25
2 ROSENBERGER L J Pectoral fin locomotion in batoid fishes: undulation versus oscillation[J]. Journal of Experimental Biology, 2001, 204 (2): 379- 394
3 DEWEY P A, ANTOINE C, SMITS A J On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin[J]. Journal of Fluid Mechanics, 2012, 691 (1): 245- 266
4 WALKER J A, WESTNEAT M W Performance limits of labriform propulsion and correlates with fin shape and motion[J]. Journal of Experimental Biology, 2002, 205 (2): 177- 187
5 CLARK R, SMITS A. Visualizations of the unsteady wake of manta ray model [C]// 44th AIAA Aerospace Sciences Melting and Exhibit. Reno Nevada: AIAA, 2006: 1-8.
6 李吉, 毕树生, 高俊, 等 仿生蝠鲼机器鱼BH-RAY3的研制及水力实验[J]. 控制工程, 2010, 17 (1): 127- 130
LI Ji, BI Shu-sheng, GAO Jun, et al Development and hydrodynamics experiments of robotic manta ray BH-RAY3[J]. Control Engineering of China, 2010, 17 (1): 127- 130
7 WANG Z, WANG Y, LI J, et al. A micro biomimetic manta ray robot fish actuated by SMA [C]// IEEE International Conference on Robotics and Biomimetics. Guilin: IEEE, 2010: 1809-1813.
8 王扬威, 王振龙, 李健, 等 形状记忆合金驱动仿生蝠鲼机器鱼的设计[J]. 机器人, 2010, 32 (2): 256- 261
WANG Yang-wei, WANG Zhen-long, LI Jian, et al Development of a biomimetic manta ray robot fish actuated by shape memory alloy[J]. Robot, 2010, 32 (2): 256- 261
9 王扬威, 闫勇程, 刘凯, 等 仿生机器魟鱼研制与游动性能实验研究[J]. 浙江大学学报: 工学版, 2017, 51 (1): 106- 112
WANG Yang-wei, YAN Yong-cheng, LIU Kai, et al Development and swimming experimental research on bionic stingray robot[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (1): 106- 112
10 CHEN Z, UM Ti, BART-SMITH H. Ionic polymer-metal composite enabled robotic manta ray [C]// Proceedings of Society of Photo-Optical Instrumentation Engineers. San Diego: SPIE, 2011: 797637-797649.
11 CHEN Z, BART-SMITH T I U, HILARY Bio-inspired robotic manta ray powered by ionic polymermetal composite artificial muscles[J]. International Journal of Smart and Nano Materials, 2012, 3 (4): 296- 308
doi: 10.1080/19475411.2012.686458
12 ZHOU C, LOW K H Better endurance and load capacity: an improved design of manta ray robot: RoMan-Ⅱ[J]. Journal of Bionic Engineering, 2010, 7 (3): 137- 144
13 ZHOU C, LOW K H Design and locomotion control of a biomimetic underwater vehicle with fin propulsion[J]. ASME Transactions on Mechatronics, 2012, 17 (1): 25- 35
doi: 10.1109/TMECH.2011.2175004
14 LOW K H, ZHOU C, SEET G, et al. Improvement and testing of a robotic manta ray: RoMan-Ⅲ [C]// IEEE International Conference on Robotics and Biomimetics. Phuket: IEEE, 2012: 1730-1735.
15 GAO J, BI S, XU Y, et al. Development and design of a robotic manta ray featuring flexible pectoral fins [C]// IEEE International Conference on Robotics and Biomimetics. Sanya: IEEE, 2008: 519-523.
16 CHEW C M, LIM Q Y, YEO K S. Development of propulsion mechanism for robot manta ray [C]// IEEE International Conference on Robotics and Biomimetics. Zhuhai: IEEE, 2016: 1918-1923.
17 WANG Z, YU J, ZHANG A. Hydrodynamic performance analysis of a biomimetic manta ray underwater glider [C]// IEEE International Conference on Robotics and Biomimetics. Qingdao: IEEE, 2016: 1631-1636.
[1] 杨楚航,贾绍辉,马晔城,朱经纬,刘涌,韩高荣. 全氧燃烧高铝玻璃熔窑三维数值工程仿真[J]. 浙江大学学报(工学版), 2021, 55(2): 410-418.
[2] 云忠,温猛,罗自荣,陈龙. 仿翠鸟水空跨介质航行器设计与入水分析[J]. 浙江大学学报(工学版), 2020, 54(2): 407-415.
[3] 徐思远,杜军,赵光喜,魏正英. 45钢/锡铅合金复合结构熔融沉积中熔滴过渡行为[J]. 浙江大学学报(工学版), 2020, 54(11): 2224-2232.
[4] 易仁义,王勇,谢玉东,乔凯,张宇磊. 液态金属磁流体发电机空载电压[J]. 浙江大学学报(工学版), 2020, 54(10): 1964-1970.
[5] 夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.
[6] 左曙光, 李悦姣, 吴旭东, 韦开君, 孙罕. 爪极电机气动噪声数值模拟及机理分析[J]. 浙江大学学报(工学版), 2017, 51(3): 612-619.
[7] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[8] 刘海宾, 王勇, 马鹏磊, 谢玉东. 基于平行式振荡翼系统参数耦合分析[J]. 浙江大学学报(工学版), 2017, 51(1): 153-159.
[9] 阮方,钱晓倩,朱耀台,吴敏莉. 分室间歇用能对墙体内外保温节能效果的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 1-7.
[10] 韩冬,龚国芳,刘毅,杨学兰. 基于不同阀芯结构的新型电液激振器[J]. 浙江大学学报(工学版), 2014, 48(5): 757-763.
[11] 杨骥, 郝志勇, 葛如炜, 郑康, 郑旭. 发动机冷却模块振动优化[J]. J4, 2012, 46(12): 2194-2200.
[12] 孟昕, 沈海斌, 严晓浪. 基于数据流的SoC性能建模方法及实现[J]. J4, 2011, 45(2): 314-322.
[13] 肖宝兰, 俞小莉,韩松,陆国栋,夏立峰. 翅片参数对车用中冷器流动传热性能的影响[J]. J4, 2010, 44(11): 2164-2168.
[14] 李强 刘淑莲 郑水英 孙婷梅. 迷宫密封非线性动力特性的数值计算方法[J]. J4, 2009, 43(3): 500-504.
[15] 豆瑞锋 温治 李强 程淑明 邹航 冯霄红 董斌. 基于连续退火炉数学模型的炉温优化策略[J]. J4, 2007, 41(10): 1735-1738.