Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (11): 2199-2207    DOI: 10.3785/j.issn.1008-973X.2024.11.001
计算机技术、控制工程     
基于多特征重构的三维目标反演算法
薛雅丽1(),周李尊1,王林飞2,欧阳权1
1. 南京航空航天大学 自动化学院,江苏 南京 211106
2. 中国自然资源航空物探遥感中心,北京 100000
Three-dimensional target inversion algorithm based on multi-feature reconstruction
Yali XUE1(),Lizun ZHOU1,Linfei WANG2,Quan OUYANG1
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100000, China
 全文: PDF(2281 KB)   HTML
摘要:

为了解决基于深度学习的三维反演方法中存在的内存占用大、训练耗时久的问题,提出基于多特征重构的三维目标反演算法. 通过特征分解提取目标的水平区域、中心深度、垂直厚度和剩余密度4类特征,实现对三维模型的压缩,降低内存占用. 设计多特征重构反演网络(MRNet),通过不同的Decoder实现对目标4类特征的预测,利用4类特征重构三维模型,实现对三维目标的反演. 在网络输入端引入梯度联合实现对目标边界信息的增强. 在跨层连接处引入CA注意力机制,实现对Decoder预测功能的分化,优化反演效果. 模拟实验结果显示,MRNet的局部相对准确度相对于3D U-Net提升了30%以上,达到88.91%,每轮训练时间仅为3D U-Net的1/13. 将MRNet应用于Vinton盐丘地区,较准确地得到了盖岩的分布情况,验证了MRNet具备一定的泛化性.

关键词: 三维目标反演多特征重构注意力机制深度学习多任务学习    
Abstract:

A 3D target inversion algorithm based on multi-feature reconstruction was proposed in order to solve the problems of large memory occupation and time-consuming training in deep learning-based three-dimensional inversion methods. Four types of features, horizontal area, center depth, vertical thickness and residual density of the target were extracted by feature decomposition to realize the compression of the three-dimensional model and reduce the memory occupation. The multi-feature reconstruction of inversion network (MRNet) was designed to realize the prediction of the four types of target features by different Decoder, and the four types of features were used to reconstruct the three-dimensional model to realize the inversion of the 3D target. The gradient union was introduced at the input of the network to realize the enhancement of target boundary information. The CA attention mechanism was introduced at the cross-layer connection to realize the differentiation of Decoder’s prediction function and optimize the inversion effect. The simulation results showed that the local relative accuracy of MRNet was improved by more than 30% compared with 3D U-Net, reaching 88.91%, and the training time per round was only 1/13 of 3D U-Net. MRNet was applied to Vinton Salt Mound, and the distribution of caprocks was obtained more accurately, which verified that MRNet had certain generalizability.

Key words: three-dimensional target inversion    multi-feature reconstruction    attention mechanism    deep learning    multitask learning
收稿日期: 2023-11-16 出版日期: 2024-10-23
CLC:  TP 39  
基金资助: 国家自然基金资助项目(62073164);上海航天科技创新基金资助项目(SAST2022-013).
作者简介: 薛雅丽(1974—),女,副教授,博士,从事人工智能、目标检测的研究. orcid.org/0000-0002-6514-369X.E-mail:xueyali@nuaa.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
薛雅丽
周李尊
王林飞
欧阳权

引用本文:

薛雅丽,周李尊,王林飞,欧阳权. 基于多特征重构的三维目标反演算法[J]. 浙江大学学报(工学版), 2024, 58(11): 2199-2207.

Yali XUE,Lizun ZHOU,Linfei WANG,Quan OUYANG. Three-dimensional target inversion algorithm based on multi-feature reconstruction. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2199-2207.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.001        https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2199

图 1  特征分解的示意图
图 2  梯度数据联合的流程图
图 3  MRNet的网络结构
图 4  编-解码器的结构细节
图 5  Coordinate attention模块的结构图
图 6  部分模拟异常体的示意图
异常体类型X/gridY/gridZ/grid
图6(a)、(b){8,12,16,20,24}{8,12,16,20,24}{8,12,16,20,24}
图6(c)16162(3层)
图6(d)10101(5层)
表 1  异常体各方向的尺寸参数
图 7  MRNet损失函数下降曲线
图 8  测试样本的重力异常
图 9  测试样本的模拟模型与MRNet的反演模型
样本${e_{\text{r}}}$/grid${e_{\text{c}}}$/grid${e_{\text{t}}}$/grid${e_{\text{d}}}$/(g?cm?3)
A00.731.490.19
B00.981.480.07
C01.362.220.01
D01.071.320.18
表 2  测试样本各特征预测值的最大绝对误差
图 10  3D U-Net和DecNet的反演模型
网络MAE/10?3Eacc/%Racc/%
t1 = 0.001t1 = 0.01t1 = 0.1t2 = 1.05t2 = 1.10t2 = 1.15t2 = 1.20
3D U-Net1.1098.8698.9899.6121.4337.5549.5158.33
DecNet1.70(+0.60)98.84(?0.01)98.95(?0.03)99.60(?0.01)20.92(?0.51)37.34(?0.21)48.97(?0.54)56.83(?1.50)
MRNet0.78(?0.32)98.93(+0.08)99.25(+0.27)99.88(+0.27)53.00(+31.58)75.27(+37.71)84.67(+35.16)88.91(+30.58)
表 3  3种反演网络的平均绝对误差、全局绝对准确率和局部相对准确率
图 11  样本D的3种误差模型投影结果
图 12  Vinton盐丘的重力数据与MRNet的反演结果
图 13  Vinton盐丘反演结果的三轴投影
图 14  3D U-Net和DecNet的反演结果
1 ZHDANOV M S. Inverse theory and applications in geophysics [M]. Netherlands: Elsevier, 2015.
2 LAST B J, KUBIK K Compact gravity inversion[J]. Geophysics, 1983, 48 (6): 713- 721
doi: 10.1190/1.1441501
3 LI Y, OLDENBURG D W 3-D inversion of gravity data[J]. Geophysics, 1998, 63 (1): 109- 119
doi: 10.1190/1.1444302
4 PORTNIAGUINE O, ZHDANOV M S Focusing geophysical inversion images[J]. Geophysics, 1999, 64 (3): 874- 887
doi: 10.1190/1.1444596
5 师学明, 王家映, 张胜业, 等 多尺度逐次逼近遗传算法反演大地电磁资料[J]. 地球物理学报, 2000, 43 (1): 122- 130
SHI Xueming, WANG Jiaying, ZHANG Shengye, et al Multiscale genetic algorithm and its application in magnetotelluric sounding data inversion[J]. Chinese Journal of Geophysics, 2000, 43 (1): 122- 130
6 罗红明, 王家映, 朱培民, 等 量子遗传算法在大地电磁反演中的应用[J]. 地球物理学报, 2009, 52 (1): 260- 267
LUO Hongming, WANG Jiaying, ZHU Peimin, et al Quantum genetic algorithm and its application in magnetotelluric data inversion[J]. Chinese Journal of Geophysics, 2009, 52 (1): 260- 267
doi: 10.1002/cjg2.1347
7 陈华根, 李嘉虓, 吴健生, 等 MT-重力模拟退火联合反演研究[J]. 地球物理学报, 2012, 55 (2): 663- 670
CHEN Huagen, LI Jiaxiao, WU Jiansheng, et al Study on simulated-annealing MT-gravity joint inversion[J]. Chinese Journal of Geophysics, 2012, 55 (2): 663- 670
8 邱宁, 刘庆生, 曾佐勋, 等 基于混沌-粒子群优化的磁法数据非线性反演方法[J]. 地球物理学进展, 2010, (6): 2150- 2155
QIU Ning, LIU Qingsheng, ZENG Zuoxun, et al Nonlinear inversion of magnetic data based on chaotic and particle swarm optimization[J]. Progress in Geophysics, 2010, (6): 2150- 2155
9 刘双, 刘天佑, 冯杰, 等 蚁群算法在磁测资料反演解释中的应用[J]. 物探与化探, 2013, 37 (1): 150- 154
LIU Shuang, LIU Tianyou, FENG Jie, et al The application of ant colony algorithm to the inversion and interpretation of magnetic data[J]. Geophysical and Geochemical Exploration, 2013, 37 (1): 150- 154
10 王逸宸, 柳林涛, 许厚泽 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44 (2): 394- 400
WANG Yichen, LIU Lintao, XU Houze The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44 (2): 394- 400
11 阳前果. 基于深度学习的重磁数据处理研究[D]. 武汉: 中国地质大学, 2021.
YANG Qianguo. Research on gravity and magnetic data processing based on deep learning [D]. Wuhan: China University of Geosciences, 2021.
12 RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention: 18th International Conference. Munich: Springer, 2015: 234−241.
13 WANG Yufeng, ZHANG Yujie, FU Lihua, et al Three-dimensional gravity inversion based on 3D U-Net++[J]. Applied Geophysics, 2021, 18 (4): 451- 460
doi: 10.1007/s11770-021-0909-z
14 ZHANG L, ZHANG G, LIU Y, et al Deep learning for 3-D inversion of gravity data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1- 18
15 ZHANG S, YIN C, CAO X, et al DecNet: decomposition network for 3D gravity inversion[J]. Geophysics, 2022, 87 (5): G103- G114
doi: 10.1190/geo2021-0744.1
16 RUDER S. An overview of gradient descent optimization algorithms [EB/OL]. (2016-09-01) [2023-10-01]. https://arxiv.org/pdf/1609.04747.pdf.
17 HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2021: 13713-13722.
18 KINGMA D P, BA J L. ADAM: a method for stochastic optimization [EB/OL]. (2014-12-01) [2023-10-01]. https://arxiv.org/pdf/1412.6980.pdf.
19 ENNEN C. Mapping gas-charged fault blocks around the Vinton Salt Dome [D]. Houston: University of Houston, 2012.
20 OLIVEIRA JR V C, BARBOSA V C F 3-D radial gravity gradient inversion[J]. Geophysical Journal International, 2013, 195 (2): 883- 902
doi: 10.1093/gji/ggt307
21 高秀鹤, 曾昭发, 孙思源, 等 基于阈值约束的协克里金法联合反演重力与重力梯度数据[J]. 地球物理学报, 2019, 62 (3): 1037- 1045
GAO Xiuhe, ZENG Zhaofa, SUN Siyuan, et al Joint inversion of gravity and gravity gradient data based on Cokriging method with the threshold constrain[J]. Chinese Journal of Geophysics, 2019, 62 (3): 1037- 1045
22 侯振隆, 王恩德, 周文纳, 等 重力梯度欧拉反褶积及其在文顿岩丘的应用[J]. 石油地球物理勘探, 2019, 54 (2): 472- 479
HOU Zhenlong, WANG Ende, ZHOU Wenna, et al Gravity gradient Euler deconvolution and its application to Vinton Salt Dome[J]. Oil Geophysical Prospecting, 2019, 54 (2): 472- 479
[1] 李凡,杨杰,冯志成,陈智超,付云骁. 基于图像识别的弓网接触点检测方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1801-1810.
[2] 肖力,曹志刚,卢浩冉,黄志坚,蔡袁强. 基于深度学习和梯度优化的弹性超材料设计[J]. 浙江大学学报(工学版), 2024, 58(9): 1892-1901.
[3] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[4] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
[5] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[6] 李林睿,王东升,范红杰. 基于法条知识的事理型类案检索方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1357-1365.
[7] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[8] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[9] 李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.
[10] 宋娟,贺龙喜,龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
[11] 钟博,王鹏飞,王乙乔,王晓玲. 基于深度学习的EEG数据分析技术综述[J]. 浙江大学学报(工学版), 2024, 58(5): 879-890.
[12] 邢志伟,朱书杰,李彪. 基于改进图卷积神经网络的航空行李特征感知[J]. 浙江大学学报(工学版), 2024, 58(5): 941-950.
[13] 刘毅,陈一丹,高琳,洪姣. 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报(工学版), 2024, 58(5): 951-959.
[14] 魏翠婷,赵唯坚,孙博超,刘芸怡. 基于改进Mask R-CNN与双目视觉的智能配筋检测[J]. 浙江大学学报(工学版), 2024, 58(5): 1009-1019.
[15] 范康,钟铭恩,谭佳威,詹泽辉,冯妍. 联合语义分割和深度估计的交通场景感知算法[J]. 浙江大学学报(工学版), 2024, 58(4): 684-695.