|
|
基于多特征重构的三维目标反演算法 |
薛雅丽1( ),周李尊1,王林飞2,欧阳权1 |
1. 南京航空航天大学 自动化学院,江苏 南京 211106 2. 中国自然资源航空物探遥感中心,北京 100000 |
|
Three-dimensional target inversion algorithm based on multi-feature reconstruction |
Yali XUE1( ),Lizun ZHOU1,Linfei WANG2,Quan OUYANG1 |
1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100000, China |
引用本文:
薛雅丽,周李尊,王林飞,欧阳权. 基于多特征重构的三维目标反演算法[J]. 浙江大学学报(工学版), 2024, 58(11): 2199-2207.
Yali XUE,Lizun ZHOU,Linfei WANG,Quan OUYANG. Three-dimensional target inversion algorithm based on multi-feature reconstruction. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2199-2207.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.001
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2199
|
1 |
ZHDANOV M S. Inverse theory and applications in geophysics [M]. Netherlands: Elsevier, 2015.
|
2 |
LAST B J, KUBIK K Compact gravity inversion[J]. Geophysics, 1983, 48 (6): 713- 721
doi: 10.1190/1.1441501
|
3 |
LI Y, OLDENBURG D W 3-D inversion of gravity data[J]. Geophysics, 1998, 63 (1): 109- 119
doi: 10.1190/1.1444302
|
4 |
PORTNIAGUINE O, ZHDANOV M S Focusing geophysical inversion images[J]. Geophysics, 1999, 64 (3): 874- 887
doi: 10.1190/1.1444596
|
5 |
师学明, 王家映, 张胜业, 等 多尺度逐次逼近遗传算法反演大地电磁资料[J]. 地球物理学报, 2000, 43 (1): 122- 130 SHI Xueming, WANG Jiaying, ZHANG Shengye, et al Multiscale genetic algorithm and its application in magnetotelluric sounding data inversion[J]. Chinese Journal of Geophysics, 2000, 43 (1): 122- 130
|
6 |
罗红明, 王家映, 朱培民, 等 量子遗传算法在大地电磁反演中的应用[J]. 地球物理学报, 2009, 52 (1): 260- 267 LUO Hongming, WANG Jiaying, ZHU Peimin, et al Quantum genetic algorithm and its application in magnetotelluric data inversion[J]. Chinese Journal of Geophysics, 2009, 52 (1): 260- 267
doi: 10.1002/cjg2.1347
|
7 |
陈华根, 李嘉虓, 吴健生, 等 MT-重力模拟退火联合反演研究[J]. 地球物理学报, 2012, 55 (2): 663- 670 CHEN Huagen, LI Jiaxiao, WU Jiansheng, et al Study on simulated-annealing MT-gravity joint inversion[J]. Chinese Journal of Geophysics, 2012, 55 (2): 663- 670
|
8 |
邱宁, 刘庆生, 曾佐勋, 等 基于混沌-粒子群优化的磁法数据非线性反演方法[J]. 地球物理学进展, 2010, (6): 2150- 2155 QIU Ning, LIU Qingsheng, ZENG Zuoxun, et al Nonlinear inversion of magnetic data based on chaotic and particle swarm optimization[J]. Progress in Geophysics, 2010, (6): 2150- 2155
|
9 |
刘双, 刘天佑, 冯杰, 等 蚁群算法在磁测资料反演解释中的应用[J]. 物探与化探, 2013, 37 (1): 150- 154 LIU Shuang, LIU Tianyou, FENG Jie, et al The application of ant colony algorithm to the inversion and interpretation of magnetic data[J]. Geophysical and Geochemical Exploration, 2013, 37 (1): 150- 154
|
10 |
王逸宸, 柳林涛, 许厚泽 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44 (2): 394- 400 WANG Yichen, LIU Lintao, XU Houze The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44 (2): 394- 400
|
11 |
阳前果. 基于深度学习的重磁数据处理研究[D]. 武汉: 中国地质大学, 2021. YANG Qianguo. Research on gravity and magnetic data processing based on deep learning [D]. Wuhan: China University of Geosciences, 2021.
|
12 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention: 18th International Conference. Munich: Springer, 2015: 234−241.
|
13 |
WANG Yufeng, ZHANG Yujie, FU Lihua, et al Three-dimensional gravity inversion based on 3D U-Net++[J]. Applied Geophysics, 2021, 18 (4): 451- 460
doi: 10.1007/s11770-021-0909-z
|
14 |
ZHANG L, ZHANG G, LIU Y, et al Deep learning for 3-D inversion of gravity data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1- 18
|
15 |
ZHANG S, YIN C, CAO X, et al DecNet: decomposition network for 3D gravity inversion[J]. Geophysics, 2022, 87 (5): G103- G114
doi: 10.1190/geo2021-0744.1
|
16 |
RUDER S. An overview of gradient descent optimization algorithms [EB/OL]. (2016-09-01) [2023-10-01]. https://arxiv.org/pdf/1609.04747.pdf.
|
17 |
HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2021: 13713-13722.
|
18 |
KINGMA D P, BA J L. ADAM: a method for stochastic optimization [EB/OL]. (2014-12-01) [2023-10-01]. https://arxiv.org/pdf/1412.6980.pdf.
|
19 |
ENNEN C. Mapping gas-charged fault blocks around the Vinton Salt Dome [D]. Houston: University of Houston, 2012.
|
20 |
OLIVEIRA JR V C, BARBOSA V C F 3-D radial gravity gradient inversion[J]. Geophysical Journal International, 2013, 195 (2): 883- 902
doi: 10.1093/gji/ggt307
|
21 |
高秀鹤, 曾昭发, 孙思源, 等 基于阈值约束的协克里金法联合反演重力与重力梯度数据[J]. 地球物理学报, 2019, 62 (3): 1037- 1045 GAO Xiuhe, ZENG Zhaofa, SUN Siyuan, et al Joint inversion of gravity and gravity gradient data based on Cokriging method with the threshold constrain[J]. Chinese Journal of Geophysics, 2019, 62 (3): 1037- 1045
|
22 |
侯振隆, 王恩德, 周文纳, 等 重力梯度欧拉反褶积及其在文顿岩丘的应用[J]. 石油地球物理勘探, 2019, 54 (2): 472- 479 HOU Zhenlong, WANG Ende, ZHOU Wenna, et al Gravity gradient Euler deconvolution and its application to Vinton Salt Dome[J]. Oil Geophysical Prospecting, 2019, 54 (2): 472- 479
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|