计算机与控制工程 |
|
|
|
|
基于广度-深度采样和图卷积网络的谣言检测方法 |
王友卫1( ),王炜琦1,凤丽洲2,朱建明1,李洋1 |
1. 中央财经大学 信息学院,北京 100081 2. 天津财经大学 统计学院,天津 300222 |
|
Rumor detection method based on breadth-depth sampling and graph convolutional networks |
Youwei WANG1( ),Weiqi WANG1,Lizhou FENG2,Jianming ZHU1,Yang LI1 |
1. School of Information, Central University of Finance and Economics, Beijing 100081, China 2. School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, China |
引用本文:
王友卫,王炜琦,凤丽洲,朱建明,李洋. 基于广度-深度采样和图卷积网络的谣言检测方法[J]. 浙江大学学报(工学版), 2024, 58(10): 2040-2052.
Youwei WANG,Weiqi WANG,Lizhou FENG,Jianming ZHU,Yang LI. Rumor detection method based on breadth-depth sampling and graph convolutional networks. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2040-2052.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.007
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2040
|
1 |
MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure via kernel learning [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics . Vancouver: Association for Computational Linguistics, 2017: 708–717.
|
2 |
MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites [C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . Melbourne: ACM, 2015: 1751–1754.
|
3 |
YANG F, LIU Y, YU X, et al. Automatic detection of rumor on sina weibo [C]// Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics . Beijing: ACM, 2012: 1–7.
|
4 |
ZHAO Z, RESNICK P, MEI Q. Enquiring minds: early detection of rumors in social media from enquiry posts [C]// Proceedings of the 24th International Conference on World Wide Web . Florence: [s. n.], 2015: 1395–1405.
|
5 |
CASTILLO C, MENDOZA M, POBLETE B. Information credibility on Twitter [C]// Proceedings of the 20th International Conference on World Wide Web . Hyderabad: ACM, 2011: 675–684.
|
6 |
REIS J C S, CORREIA A, MURAI F, et al Supervised learning for fake news detection[J]. IEEE Intelligent Systems, 2019, 34 (2): 76- 81
doi: 10.1109/MIS.2019.2899143
|
7 |
YANG R, ZHANG J, GAO X, et al. Simple and effective text matching with richer alignment features [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics . Florence: Association for Computational Linguistics, 2019: 4699–4709.
|
8 |
KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media [C]// 2013 IEEE 13th International Conference on Data Mining . Dallas: IEEE, 2013: 1103–1108.
|
9 |
LIU X, NOURBAKHSH A, LI Q, et al. Real-time rumor debunking on Twitter [C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . Melbourne: ACM, 2015: 1867–1870.
|
10 |
YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence . Melbourne: AAAI Press, 2017: 3901–3907.
|
11 |
MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence . New York: AAAI Press, 2016: 3818–3824.
|
12 |
WU K, YANG S, ZHU K Q. False rumors detection on Sina Weibo by propagation structures [C]// 2015 IEEE 31st International Conference on Data Engineering . Seoul: IEEE, 2015: 651–662.
|
13 |
VEDOVA M L D, TACCHINI E, MORET S, et al. Automatic online fake news detection combining content and social signals [C]// 2018 22nd Conference of Open Innovations Association (FRUCT) . Jyvaskyla: IEEE, 2018: 272–279.
|
14 |
MA J, GAO W, WONG K F. Rumor detection on Twitter with tree-structured recursive neural networks [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . Melbourne: Association for Computational Linguistics, 2018: 1980–1989.
|
15 |
KUMAR S, CARLEY K. Tree LSTMs with convolution units to predict stance and rumor veracity in social media conversations [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics . Florence: Association for Computational Linguistics, 2019: 5047–5058.
|
16 |
LAO A, SHI C, YANG Y. Rumor detection with field of linear and non-linear propagation [C]// Proceedings of the Web Conference 2021 . Ljubljana: ACM, 2021: 3178–3187.
|
17 |
VOSOUGHI S, ROY D, ARAL S The spread of true and false news online[J]. Science, 2018, 359 (6380): 1146- 1151
doi: 10.1126/science.aap9559
|
18 |
BIAN T, XIAO X, XU T, et al. Rumor detection on social media with bi-directional graph convolutional networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S. l.]: AAAI Press, 2020, 34(1): 549–556.
|
19 |
HUANG Q, YU J, WU J, et al. Heterogeneous graph attention networks for early detection of rumors on Twitter [C]// 2020 International Joint Conference on Neural Networks . Glasgow: IEEE, 2020.
|
20 |
杨延杰, 王莉, 王宇航 融合源信息和门控图神经网络的谣言检测研究[J]. 计算机研究与发展, 2021, 58 (7): 1412- 1424 YANG Yanjie, WANG Li, WANG Yuhang Rumor detection based on source information and gating graph neural network[J]. Journal of Computer Research and Development, 2021, 58 (7): 1412- 1424
|
21 |
HE Z, LI C, ZHOU F, et al. Rumor detection on social media with event augmentations [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval . [S.l.]: ACM, 2021: 2020–2024.
|
22 |
LIN H, MA J, CHEN L, et al. Detect rumors in microblog posts for low-resource domains via adversarial contrastive learning [C]// Findings of the Association for Computational Linguistics: NAACL 2022 . Seattle: Association for Computational Linguistics, 2022: 2543–2556.
|
23 |
WEI L, HU D, ZHOU W, et al. Uncertainty-aware propagation structure reconstruction for fake news detection [C]// Proceedings of the 29th International Conference on Computational Linguistics . Gyeongju: International Committee on Computation Linguistics, 2022: 2759–2768.
|
24 |
KHOO L M S, CHIEU H L, QIAN Z, et al. Interpretable rumor detection in microblogs by attending to user interactions [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S. l.]: AAAI Press, 2020: 8783–8790.
|
25 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017–02–22)[2023–07–19]. https://arxiv.org/pdf/1609.02907.
|
26 |
NIKOLENTZOS G, TIXIER A, VAZIRGIANNIS M. Message passing attention networks for document understanding [C]// Proceedings of the AAAI Conference on Artificial Intelligence . [S. l.]: AAAI Press, 2020: 8544–8551.
|
27 |
WEI L, HU D, ZHOU W, et al. Towards propagation uncertainty: edge-enhanced bayesian graph convolutional networks for rumor detection [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing . [S.l.]: Association for Computational Linguistics, 2021: 3845–3854.
|
28 |
LI S, ZHAO Z, HU R, et al. Analogical reasoning on Chinese morphological and semantic relations [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . Melbourne: Association for Computational Linguistics, 2018: 138–143.
|
29 |
HUANG Q, ZHOU C, WU J, et al. Deep structure learning for rumor detection on Twitter [C]// 2019 International Joint Conference on Neural Networks . Budapest: IEEE, 2019: 1–8.
|
30 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2017–01–30)[2023–03–29]. https://arxiv.org/pdf/1412.6980.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|