计算机与控制工程 |
|
|
|
|
基于对比学习的零样本对象谣言检测 |
陈珂1( ),张文浩2 |
1. 广东石油化工学院 计算机学院,广东 茂名 525000 2. 广东石油化工学院 电子信息工程学院,广东 茂名 525000 |
|
Zero-shot object rumor detection based on contrastive learning |
Ke CHEN1( ),Wenhao ZHANG2 |
1. School of Computer, Guangdong University of Petrochemical Technology, Maoming 525000, China 2. School of Electronic and Information Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China |
1 |
KANTAR M. Social Media Trends [R]. London: Kantar Media, 2019.
|
2 |
KAPFERER J. Rumeurs-Le plus vieux média du monde [M]// Pari: Editions du Seuil, 1987: 31−33.
|
3 |
LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks [C]// Proceedings of the 23rd AAAI Conference on Artificial Intelligence . Chicago: AAAI Press, 2008: 646−651 .
|
4 |
CHANG M W, RATINOV L, ROTH D, et al. Importance of semantic representation: dataless classification [C]// Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago: AAAI Press, 2008: 830−835.
|
5 |
LIN H, YI P, MA J, et al. Zero-shot rumor detection with propagation structure via prompt learning [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Washington: AAAI Press, 2023: 5213−5221.
|
6 |
SONG Y, UPADHYAY S, PENG H, et al Toward any-language zero-shot topic classification of textual documents[J]. Artificial Intelligence, 2019, 274 (C): 133- 150
|
7 |
SONG Y, UPADHYAY S, PENG H, et al. Cross-lingual dataless classification for many languages [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence . New York: AAAI Press, 2016: 2901−2907.
|
8 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 44
doi: 10.1145/3422622
|
9 |
KINGMA D P, WELLING M. Auto-encoding variational bayes [C]// Proceedings of the International Conference on Learning Representations . Ithaca: ArXiv, 2014: 14−16.
|
10 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the International Conference on Machine Learning . [s. l. ]: PMLR, 2020: 1597−1607.
|
11 |
HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 9726−9735.
|
12 |
LIANG B, CHEN Z X, GUI L, et al. Zero-shot stance detection via contrastive learning [C]// Proceedings of the ACM Web Conference. Lyon: ACM, 2022: 2738−2747.
|
13 |
VICARIO M D, QUATTROCIOCCHI W, SCALA A, et al Polarization and fake news: early warning of potential misinformation targets[J]. ACM Transactions on the Web, 2019, 13 (2): 1- 22
|
14 |
MEEL P, VISHWAKARMA D K Fake news, rumor, information pollution in social media and web: a contemporary survey of state-of-the-arts, challenges and opportunities[J]. Expert Systems with Applications, 2020, 153 (1): 112986
|
15 |
WANG Z, GUO Y Rumor events detection enhanced by encoding sentimental information into time series division and word representations[J]. Neurocomputing, 2020, 397 (2): 224- 243
|
16 |
KUMAR S, CARLEY K M. Tree LSTMs with convolution units to predict stance and rumor veracity in social media conversations [C]// Proceedings of the 57th annual meeting of the association for computational linguistics . Florence: ACL, 2019: 5047−5058.
|
17 |
BIAN T, XIAO X, XU T, et al. Rumor detection on social media with bi-directional graph convolutional networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence . New York: AAAI Press, 2020: 546−556.
|
18 |
ZHANG Q, LIPANI A, LIANG S, et al. Reply-aided detection of misinformation via bayesian deep learning [C]// Proceedings of the World Wide Web Conference . San Francisco: ACM, 2019: 2333−2343.
|
19 |
RIEDEL B, AUGENSTEIN I, SPITHOURAKIS G P, et al. A simple but tough-to-beat baseline for the fake news challenge stance detection task [EB/OL]. (2018−05−21). https://doi.org/10.48550/arXiv.1707.03264.
|
20 |
LU Y J, LI C T. GCAN: graph-aware co-attention networks for explainable fake news detection on social media [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics . [s. l. ]: ACL, 2020: 505−514.
|
21 |
RAO D, MIAO X, JIANG Z, et al. STANKER: stacking network based on level-grained attention-masked BERT for rumor detection on social media [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing . Online and Punta Cana: ACL, 2021: 3347−3363.
|
22 |
CHEN X, ZHOU F, TRAJCEVSKI G, et al Multi-view learning with distinguishable feature fusion for rumor detection[J]. Knowledge-Based Systems, 2022, 240 (8): 108085
|
23 |
XU Y, GUO J, QIU W, et al. "Comments matter and the more the better!": improving rumor detection with user comments [C]// International Conference on Trust, Security and Privacy in Computing and Communications . Wuhan: IEEE, 2022: 383−390.
|
24 |
PUSHP P K, SRIVASTAVA M M. Train once, test anywhere: zero-shot learning for text classification [EB/OL]. (2017−12−23). https://doi.org/10.48550/arXiv.1 712.05972.
|
25 |
陆恒杨, 范晨悠, 吴小俊. 面向网络社交媒体的少样本新 冠谣言检测 [J]. 中文信息学报, 2022, 36(1): 135−144. LU Hengyang, FAN Chenyou, WU Xiaojun. Few-shot COVID-19 rumor detection for online social media [J]. Journal of Chinese Information Processing . 2022, 36(1): 135−144.
|
26 |
ZHOU H, MA T, RONG H, et al MDMN: multi-task and domain adaptation based multi-modal network for early rumor detection[J]. Expert Systems with Applications, 2022, 195 (3): 116517
|
27 |
RAN H, JIA C. Unsupervised cross-domain rumor detection with contrastive learning and cross-attention [C]// Proceedings of the AAAI Conference on Artificial Intelligence . Washington: AAAI Press, 2023: 13510−13518.
|
28 |
MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks [C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence . New York: AAAI Press, 2016: 3818−3824.
|
29 |
DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics . Minneapolis: ACL, 2019: 4171−4186.
|
30 |
BLEI D M, NG A Y, JORDAN M I Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3 (1): 993- 1022
|
31 |
MA J, GAO W, WEI Z, et al. Detect rumors using time series of social context information on microblogging websites [C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management . Melbourne : ACM , 2015: 1751−1754.
|
32 |
MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure via kernel learning [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics . Vancouver: ACL, 2017: 708−717.
|
33 |
LIU Z, WEI Z, ZHANG R Rumor detection based on convolutional neural network[J]. Journal of Computer Applications, 2017, 37 (11): 3053
|
34 |
SUJANA Y, LI J, KAO H Y. Rumor detection on twitter using multiloss hierarchical bilstm with an attenuation factor [C]// Asian Chapter of the Association for Computational Linguistics . [s. l. ]: ACL, 2020: 18−26.
|
35 |
RANI N, DAS P, BHARDWAJ A K. A hybrid deep learning model based on CNN-BiLSTM for rumor detection [C]// Proceedings of the 2021 6th International Conference on Communication and Electronics Systems . Coimbatre: IEEE, 2021: 1423−1427.
|
36 |
MA J, GAO W, JOTY S, et al An attention-based rumor detection model with tree-structured recursive neural networks[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11 (4): 1- 28
|
37 |
TU K, CHEN C, HOU C, et al Rumor2vec: a rumor detection framework with joint text and propagation structure representation learning[J]. Information Sciences, 2021, 560 (1): 137- 151
|
38 |
LIU Y, OTT M, GOYAL N, et al. Roberta: a robustly optimized Bert pretraining approach [C]// Proceedings of the 20th Chinese National Conference on Computational Linguistics . Huhhot: Chinese Information Processing Society of China, 2021: 1218−1227.
|
39 |
BELTAGY I, PETERS M E, COHAN A. Longformer: the long-document transformer [EB/OL]. [2020-12-02]. https://doi.org/10.48550/arXiv.2004.05150.
|
40 |
KHOO L M S, CHIEU H L, QIAN Z, et al. Interpretable rumor detection in microblogs by attending to user interactions [C]// Proceedings of the AAAI Conference on Artificial Intelligence . California: AAAI Press, 2020: 8783-8790.
|
41 |
WU Y, ZENG Y, YANG J, et al Weibo rumor recognition based on communication and stacking ensemble learning[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 1- 12
|
42 |
RISCH J, KRESTEL R. Bagging bert models for robust aggression identification [C]// Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying . Marseille: ELRA, 2020: 55−61.
|
43 |
GENG Y, LIN Z, FU P, et al. Rumor detection on social media: a multi-view model using self-attention mechanism [C]// Proceedings of the Computational Science-ICCS 2019: 19th International Conference . Faro: Springer-Verlag, 2019: 339−352.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|