计算机技术、通信技术 |
|
|
|
|
基于迁移学习的交互时序数据可视化生成方法 |
周姿含1( ),王叙萌2,陈为1,3,*( ) |
1. 浙江大学 CAD & CG国家重点实验室,浙江 杭州 310058 2. 南开大学 计算机科学与技术系,天津 300350 3. 教育部 浙江大学艺术与考古图像数据实验室,浙江 杭州 310058 |
|
Interactive visualization generation method for time series data based on transfer learning |
Zihan ZHOU1( ),Xumeng WANG2,Wei CHEN1,3,*( ) |
1. State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310058, China 2. College of Computer Science, Nankai University, Tianjin 300350, China 3. Laboratory of Art and Archaeology Image, Zhejiang University, Ministry of Education, Hangzhou 310058, China |
1 |
WONGSUPHASAWAT K, GOMEZ J A G, PLAISANT C, et al. LifeFlow: visualizing an overview of event sequences [C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Vancouver: ACM, 2011: 1747-1756.
|
2 |
TULI S, CASALE G, JENNINGS N R TranAD: deep transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of Very Large Data Base, 2022, 15 (6): 1201- 1204
|
3 |
FANG Y, XU H, JIANG J. A survey of time series data visualization research [C]//Proceedings of IOP Conference Series: Materials Science and Engineering. [S. l.]: IOP, 2020: 022013.
|
4 |
WALKER J S, JONES M W, LARAMEE R S, et al TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data[J]. The Visual Computer, 2015, 31 (6-8): 1067- 1078
doi: 10.1007/s00371-015-1112-0
|
5 |
HAO M C, MARWAH M, JANETZKO H, et al Visual exploration of frequent patterns in multivariate time series[J]. Information Visualization, 2012, 11 (1): 71- 83
doi: 10.1177/1473871611430769
|
6 |
WALKER J, BORGO R, JONES M W TimeNotes: a study on effective chart visualization and interaction techniques for time-series data[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 22 (1): 549- 558
|
7 |
TOMINSKI C, SCHUMANN H. Enhanced interactive spiral display [C]//Proceedings of the Annual Swedish Chapter of Eurogaphics Conference. Sweden: Linköping University Electronic Press, 2008: 53-56.
|
8 |
SOBRAL T, GALVÃO T, BORGES J Visualization of urban mobility data from intelligent transportation systems[J]. Sensors, 2019, 19 (2): 332
doi: 10.3390/s19020332
|
9 |
HAIGH K Z, FOSLIEN W, GURALNIK V. Visual query language: finding patterns in and relationships among time series data [C]//7th Workshop on Mining Scientific and Engineering Datasets. [S. l.]: Citeseer, 2004: 324-332.
|
10 |
SADAHIRO Y, KOBAYASHI T Exploratory analysis of time series data: detection of partial similarities, clustering, and visualization[J]. Computers, Environment and Urban Systems, 2014, 45: 24- 33
|
11 |
ALI M, JONES M W, XIE X, et al TimeCluster: dimension reduction applied to temporal data for visual analytics[J]. The Visual Computer, 2019, 35 (6-8): 1013- 1026
doi: 10.1007/s00371-019-01673-y
|
12 |
GHASSEMPOUR S, GIROSI F, MAEDER A Clustering multivariate time series using hidden Markov models[J]. International Journal of Environmental Research and Public Health, 2014, 11 (3): 2741- 2763
doi: 10.3390/ijerph110302741
|
13 |
AGHABOZORGI S, YING WAH T, HERAWAN T, et al A hybrid algorithm for clustering of time series data based on affinity search technique[J]. The Scientific World Journal, 2014, 2014 (1): 562194
|
14 |
LI J, ZHOU C Incorporation of human knowledge into data embeddings to improve pattern significance and interpretability[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 29 (1): 723- 733
|
15 |
YANG Q F, GAO W Y, HAN G, et al HCDC: a novel hierarchical clustering algorithm based on density-distance cores for data sets with varying density[J]. Information Systems, 2023, 114: 102159
doi: 10.1016/j.is.2022.102159
|
16 |
KEOGH E J, PAZZANI M J. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback [C]// Knowledge Discovery and Data Mining. New York: AAAI, 1998: 239-243.
|
17 |
FAHAD S, SU F, KHAN S U, et al Implementing a novel deep learning technique for rainfall forecasting via climatic variables: an approach via hierarchical clustering analysis[J]. Science of the Total Environment, 2023, 854: 158760
doi: 10.1016/j.scitotenv.2022.158760
|
18 |
RODRIGUES P P, GAMA J, PEDROSO J Hierarchical clustering of time-series data streams[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20 (5): 615- 627
doi: 10.1109/TKDE.2007.190727
|
19 |
MA Q, LI S, ZHUANG W, et al Self-supervised time series clustering with model-based dynamics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (9): 3942- 3955
|
20 |
DEMPSTER A, PETITJEAN F, WEBB G I ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels[J]. Data Mining and Knowledge Discovery, 2020, 34 (5): 1454- 1495
doi: 10.1007/s10618-020-00701-z
|
21 |
YALÇIN M A, ELMQVIST N, BEDERSON B B Keshif: rapid and expressive tabular data exploration for novices[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24 (8): 2339- 2352
|
22 |
WONGSUPHASAWAT K, QU Z, MORITZ D, et al. Voyager 2: augmenting visual analysis with partial view specifications [C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver: ACM, 2017: 2648-2659.
|
23 |
REN D, LEE B, BREHMER M Charticulator: interactive construction of bespoke chart layouts[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 25 (1): 789- 799
|
24 |
PIOCH N J, EVERETT J O. Polestar: collaborative knowledge management and sensemaking tools for intelligence analysts [C]//Proceedings of the 15th ACM International Conference on Information and Knowledge Management. Virginia: ACM, 2006: 513-521.
|
25 |
SATYANARAYAN A, HEER J Lyra: an interactive visualization design environment[J]. Computer Graphics Forum, 2014, 33 (3): 351- 360
doi: 10.1111/cgf.12391
|
26 |
REN D, HÖLLERER T, YUAN X iVisDesigner: expressive interactive design of information visualizations[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 20 (12): 2092- 2101
doi: 10.1109/TVCG.2014.2346291
|
27 |
WANG Y, ZHANG H, HUANG H, et al. InfoNice: easy creation of information graphics [C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal: ACM, 2018: 1-12.
|
28 |
XIA H, HENRY RICHE N, CHEVALIER F, et al. DataInk: direct and creative data-oriented drawing [C]// Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal: ACM, 2018: 1-13.
|
29 |
VARTAK M, RAHMAN S, MADDEN S, et al. SeeDB: efficient data-driven visualization recommendations to support visual analytics [C]//Proceedings of the VLDB Endowment International Conference on Very Large Data Bases. Hawaii: VLDB Endowment, 2015: 2182-2193.
|
30 |
WANG Y, SUN Z, ZHANG H, et al DataShot: automatic generation of fact sheets from tabular data[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26 (1): 895- 905
|
31 |
DEMIRALP Ç, HAAS P J, PARTHASARATHY S, et al. Foresight: recommending visual insights [C]// Proceedings of the VLDB Endowment International Conference on Very Large Data Bases. Munich: VLDB Endowment, 2017: 1937-1940.
|
32 |
QIAN C, SUN S, CUI W, et al Retrieve-then-adapt: example-based automatic generation for proportion-related infographics[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27 (2): 443- 452
doi: 10.1109/TVCG.2020.3030448
|
33 |
SHI D, XU X, SUN F, et al Calliope: automatic visual data story generation from a spreadsheet[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27 (2): 453- 463
doi: 10.1109/TVCG.2020.3030403
|
34 |
BORGWARDT K M, GRETTON A, RASCH M J, et al Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22 (14): 49- 57
doi: 10.1093/bioinformatics/btl242
|
35 |
PAN S J, TSANG I W, KWOK J T, et al Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2010, 22 (2): 199- 210
|
36 |
CARROLL M L, BROWN M E, WOOTEN M R, et al In situ air temperature and humidity measurements over diverse land covers in Greenbelt, Maryland, november 2013–november 2015[J]. Earth System Science Data, 2016, 8 (2): 415- 423
doi: 10.5194/essd-8-415-2016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|