计算机技术 |
|
|
|
|
深度监督对齐的零样本图像分类方法 |
曾素佳( ),庞善民*( ),郝问裕 |
西安交通大学 软件学院,陕西 西安 710049 |
|
Zero-shot image classification method base on deep supervised alignment |
Su-jia ZENG( ),Shan-min PANG*( ),Wen-yu HAO |
School of Software Engineering, Xi’an Jiaotong University, Xi’an 710049, China |
1 |
LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attributetransfer [C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 951-958.
|
2 |
WANG W, ZHENG V W, YU H, et al A survey of zero-shot learning: settings, methods, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 37
|
3 |
冀中, 汪浩然, 于云龙等 零样本图像分类综述: 十年进展[J]. 中国科学:信息科学, 2019, 49 (10): 1299- 1320 JI Zhong, WANG Hao-ran, YU Yun-long, et al A decadal survey of zero-shot image classification[J]. Scientia Sinica (Informationis), 2019, 49 (10): 1299- 1320
doi: 10.1360/N112018-00312
|
4 |
刘靖祎, 史彩娟, 涂冬景等 零样本图像分类综述[J]. 计算机科学与探索, 2021, 15: 812- 824 LIU Jing-yi, SHI Cai-juan, TU Dong-jing, et al A survey of zero-shot image classification[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15: 812- 824
doi: 10.3778/j.issn.1673-9418.2010092
|
5 |
CHAO W L, CHANGPINYO S, GONG B, et al. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild [C]// Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016: 52-68.
|
6 |
SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1199-1208.
|
7 |
JIANG H. , WANG R. , SHAN S, et al. Learning class prototypes via structure alignment for zero-shot recognition [C]// European Conference on Computer Vision. Munich: Springer, 2018: 121-138.
|
8 |
HUI B, ZHU P, HU Q, et al. Self-attention relation network for few-shot learning [C]// 2019 IEEE International Conference on Multimedia and Expo Workshops. Shanghai: IEEE, 2019: 198-203.
|
9 |
HUANG S, LIN J, HUANGFU L Class-prototype discriminative network for generalized zero-shot learning[J]. IEEE Signal Processing Letters, 2020, 27: 301- 305
doi: 10.1109/LSP.2020.2968213
|
10 |
JIANG H, WANG R, SHAN S, et al. Transferable contrastive network for generalized zero-shot learning [C]// 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9764-9773.
|
11 |
ZHANG F, SHI G. Co-representation network for generalized zero-shot learning [C]// Proceedings of the 36th International Conference on Machine Learning. California: JMLR. org, 2019: 7434-7443.
|
12 |
ZHANG L, XIANG T, GONG S. Learning a deep embedding model for zero-shot learning [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3010-3019.
|
13 |
GOODFELLOW I J, POUGET ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// 2014 Advances in Neural Information Processing Systems. Montreal: MIT Press, 2014: 2672-2680.
|
14 |
GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation [C]// 2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: JMLR. org, 2015: 1180-1189.
|
15 |
ZHU Y, ELHOSEINY M, LIU B, et al. A generative adversarial approach for zero-shot learning from noisy texts [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1004-1013.
|
16 |
LIU S, LONG M, WANG J, et al. Generalized zero-shot learning with deep calibration network [C]// 2018 Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal: Curran Associates Inc. , 2018: 2009-2019.
|
17 |
VERMA V K, ARORA G, MISHRA A, et al. Generalized zero-shot learning via synthesized examples [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4281-4289.
|
18 |
XIAN Y, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5542-5551.
|
19 |
张越. 基于生成对抗网络的零样本图像分类研究[D]. 呼和浩特: 内蒙古大学, 2020: 16-38. ZHANG Yue. Research on zero-shot image classification based on generative adversarial network [D]. Huhehaote: Inner Mongolia University, 2020: 16-38.
|
20 |
WAH C, BRANSON S, PERONA P, et al. Multiclass recognition and part localization with humans in the loop [C]// Proceedings of the 2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2524-2531.
|
21 |
XIAN Y, LAMPERT C H, SCHIELE B, et al Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 2251- 2265
|
22 |
PATTERSON G, XU C, SU H, et al The sun attribute database: beyond categories for deeper scene understanding[J]. International Journal of Computer Vision, 2014, 108 (1-2): 59- 81
doi: 10.1007/s11263-013-0695-z
|
23 |
FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 1778-1785.
|
24 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|