机械工程、能源工程 |
|
|
|
|
电动公交车电池荷电状态的Seq2Seq预测方法 |
董红召( ),王桢,张楠,佘翊妮,林盈盈 |
浙江工业大学 智能交通系统联合研究所,浙江 杭州 310014 |
|
Seq2Seq prediction method of state of charge of electric bus battery |
Hong-zhao DONG( ),Zhen WANG,Nan ZHANG,Yi-ni SHE,Ying-ying LIN |
Joint Institute of Intelligent Transportation System, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
引用本文:
董红召,王桢,张楠,佘翊妮,林盈盈. 电动公交车电池荷电状态的Seq2Seq预测方法[J]. 浙江大学学报(工学版), 2023, 57(10): 2051-2059.
Hong-zhao DONG,Zhen WANG,Nan ZHANG,Yi-ni SHE,Ying-ying LIN. Seq2Seq prediction method of state of charge of electric bus battery. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2051-2059.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.014
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2051
|
1 |
MANZOLLI J A, TROVÃO J P, ANTUNES C H A review of electric bus vehicles research topics–methods and trends[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112211
doi: 10.1016/j.rser.2022.112211
|
2 |
朱丽群, 张建秋 一种联合锂电池健康和荷电状态的新模型[J]. 中国电机工程学报, 2018, 38 (12): 3613- 3620 ZHU Li-qun, ZHANG Jian-qiu A new model of jointed states of charge and health for lithium batteries[J]. Proceedings of the CSEE, 2018, 38 (12): 3613- 3620
|
3 |
常九健, 张煜帆 基于EMB的纯电动汽车制动能量回收优化控制策略研究[J]. 汽车工程, 2022, 44 (1): 64- 72 CHANG Jiu-jian, ZHANG Yu-fan Research on optimization control strategy for braking energy recovery of a battery electric vehicle based on EMB system[J]. Automotive Engineering, 2022, 44 (1): 64- 72
|
4 |
SOLDO J, ŠKUGOR B, DEUR J Online synthesis of an optimal battery state-of-charge reference trajectory for a plug-in hybrid electric city bus[J]. Energies, 2021, 14 (11): 3168
doi: 10.3390/en14113168
|
5 |
胡韵华, 冯瑾涛, 邓清闯, 等 电动汽车直流充电桩自动化测试平台的设计与应用[J]. 电力系统保护与控制, 2021, 49 (7): 150- 159 HU Yun-hua, FENG Jin-tao, DENG Qing-chuang, et al Development and application of automated test platform for DC charging piles of electric vehicles[J]. Power System Protection and Control, 2021, 49 (7): 150- 159
|
6 |
王义军, 左雪 锂离子电池荷电状态估算方法及其应用场景综述[J]. 电力系统自动化, 2022, 46 (14): 193- 207 WANG Yi-jun, ZUO Xue Review on estimation methods for state of charge of lithiumion battery and their application[J]. Automation of Electric Power Systems, 2022, 46 (14): 193- 207
|
7 |
来鑫, 李云飞, 郑岳久, 等 基于SOC-OCV优化曲线与EKF的锂离子电池荷电状态全局估计[J]. 汽车工程, 2021, 43 (1): 19- 26 LAI Xin, LI Yun-fei, ZHENG Yue-jiu, et al An overall estimation of state-of-charge based on SOC-OCV optimization curve and EKF for lithiumion battery[J]. Automotive Engineering, 2021, 43 (1): 19- 26
|
8 |
罗勇, 祁朋伟, 黄欢, 等 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42 (5): 681- 687 LUO Yong, QI Peng-wei, HUANG Huan, et al Study on battery SOC estimation by ampere hour intergral method with capacity correction[J]. Automotive Engineering, 2020, 42 (5): 681- 687
|
9 |
寇发荣, 王甜甜, 王思俊, 等 基于ABC-RFEKF算法的锂电池SOC估计[J]. 电力系统保护与控制, 2022, 50 (4): 163- 171 KOU Fa-rong, WANG Tian-tian, WANG Si-jun, et al Lithium battery SOC estimation base on an ABC-RFEKF algorithm[J]. Power System Protection and Control, 2022, 50 (4): 163- 171
|
10 |
孙国强, 任佳琦, 成乐祥, 等 基于分数阶阻抗模型的磷酸铁锂电池荷电状态估计[J]. 电力系统自动化, 2018, 42 (23): 57- 63 SUN Guo-qiang, REN Jia-qi, CHENG Le-xiang, et al State of charge estimation of LiFePO4 battery based on fractional-order impedance model[J]. Automation of Electric Power Systems, 2018, 42 (23): 57- 63
|
11 |
孙金磊, 邹鑫, 顾浩天, 等 基于FFRLS-EKF联合算法的锂离子电池荷电状态估计方法[J]. 汽车工程, 2022, 44 (4): 505- 513 SUN Jin-lei, ZOU Xin, GU Hao-tian, et al State of charge estimation for Lithiumion battery based on FFRLS-EKF joint algorithm[J]. Automotive Engineering, 2022, 44 (4): 505- 513
|
12 |
SCHWUNK S, ARMBRUSTER N, STRAUB S, et al Particle filter for state of charge and state of health estimation for lithium-iron phosphate batterie[J]. Journal of Power Sources, 2013, 239: 705- 710
doi: 10.1016/j.jpowsour.2012.10.058
|
13 |
WU J, ZHANG C H, CUI N X Fuzzy energy management strategy for a hybrid electric vehicle based on driving cycle recognition[J]. International Journal of Automotive Technology, 2012, 13 (7): 1159- 1167
doi: 10.1007/s12239-012-0119-z
|
14 |
宋媛媛. 基于行驶工况的纯电动汽车能耗建模及续驶里程估算研究[D]. 北京: 北京交通大学, 2014: 11-13. SONG Yuan-yuan. Energy consumption modeling and cruising range estimation based on driving cycle for electric vehicles [D]. Beijing: Beijing Jiaotong University, 2014: 11-13.
|
15 |
赵轩, 马建, 刘瑞, 等 基于GGAP-RBF神经网络的多参数纯电动客车蓄电池荷电状态预测[J]. 中国公路学报, 2015, 28 (4): 116- 126 ZHAO Xuan, MA Jian, LIU Rui, et al Multiple parameters state-of-charge estimation of battery for pure electric bus based on GGAP-RBF neural network[J]. China Journal of Highway and Transport, 2015, 28 (4): 116- 126
|
16 |
鲍伟, 葛建军 基于稀疏采样数据的电动公交车电池SOC预测方法研究[J]. 汽车工程, 2020, 42 (3): 367- 374 BAO Wei, GE Jian-jun Study on battery SOC prediction method for electric bus based on sparsely sampled data[J]. Automotive Engineering, 2020, 42 (3): 367- 374
|
17 |
WANG S, CAO J, CHEN H, et al SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction[J]. ACM Transactions on Spatial Algorithms and Systems, 2020, 6 (4): 1- 24
|
18 |
QIN Y, SONG D, CHEN H, et al. A dual-stage attention-base recurrent neural network for time series prediction [C]// Proceedings of 26th International Joint Conference on Artificial Intelligence. Melboume: [s. n. ], 2017: 399-404.
|
19 |
HOCHREITER S, SCHMIDHUBER J Long short term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
20 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al Long short termmemory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2017, 65 (8): 6730- 6739
|
21 |
DONG G, WEI J, CHEN Z Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries[J]. Journal of Power Sources, 2016, 328: 615- 626
doi: 10.1016/j.jpowsour.2016.08.065
|
22 |
胡杰, 高志文 基于数据驱动的电动汽车动力电池SOC预测[J]. 汽车工程, 2021, 43 (1): 1- 9 HU Jie, GAO Zhi-wen A data-driven SOC prediction scheme for traction battery in electric vehicles[J]. Automotive Engineering, 2021, 43 (1): 1- 9
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|