Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 90-98    DOI: 10.3785/j.issn.1008-973X.2026.01.009
计算机技术     
知识嵌入增强的对比推荐模型
谢涛1(),葛慧丽2,*(),陈宁2,汪晓锋1,李延松3,黄晓峰3
1. 中国计量大学 信息工程学院,浙江 杭州 310018
2. 浙江省科技项目管理服务中心,浙江 杭州 310006
3. 杭州电子科技大学 通信工程学院,浙江 杭州 310018
Knowledge embedding-enhanced contrastive recommendation model
Tao XIE1(),Huili GE2,*(),Ning CHEN2,Xiaofeng WANG1,Yansong LI3,Xiaofeng HUANG3
1. College of Information Engineering, China Jiliang University, Hangzhou 310018, China
2. Zhejiang Science and Technology Project Management Service Center, Hangzhou 310006, China
3. School of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
 全文: PDF(1067 KB)   HTML
摘要:

为了缓解对比推荐模型因过度依赖结构扰动进行数据增强而导致性能下降的问题,提出知识嵌入增强的对比推荐模型,利用知识图谱的嵌入表征来引导对比学习过程,从而实现高效的物品推荐. 通过关系感知的知识聚合模块捕获知识图谱中的异质性关系信息以获得知识嵌入,利用图神经网络编码器从用户-项目交互图中获取实体表征;通过基于知识增强的对比推荐模块将知识嵌入融入用户交互图的表征学习中,强化用户和项目嵌入表示,从而提升推荐精度. 在企业服务、书籍和新闻3个数据集上进行大量实验,结果表明,所提模型在处理稀疏数据集时具有明显优势. 相较于基线模型KGAT、CKAN,所提模型在Recall和NDCG指标上的平均提升幅度超过20%;与性能优越的KGIN、KGCL、MGDCF等对比学习模型相比,实现了平均10%的性能增益,说明所提方法具有全面的性能优势.

关键词: 推荐系统知识图谱对比学习数据增强数据稀疏    
Abstract:

A new contrastive recommendation model was proposed to alleviate the performance degradation caused by the excessive reliance on structural perturbations for data augmentation. The embedding representations of knowledge graphs were leveraged to guide the contrastive learning process for highly effective item recommendation. A relation-aware knowledge aggregation module was designed to capture heterogeneous relational information from the knowledge graphs, thereby obtaining knowledge embeddings. A graph neural network encoder was utilized to learn entity representations from the user-item interaction graphs. The knowledge embeddings were incorporated into the representation learning through a knowledge-enhanced contrastive recommendation module, to enhance the user and item embeddings and improve the recommendation accuracy. Extensive experiments were conducted on three datasets of enterprise services, books, and news. The results demonstrated that the proposed model had significant advantages in handling sparse datasets. Compared with the baseline models KGAT and CKAN, the proposed model achieved average improvements of over 20% on the Recall and NDCG metrics. Compared with the state-of-the-art contrastive learning models such as KGIN, KGCL and MGDCF, an average performance gain of 10% was realized. These results demonstrate that the proposed method has comprehensive performance advantages.

Key words: recommendation system    knowledge graph    contrastive learning    data augmentation    data sparsity
收稿日期: 2025-03-04 出版日期: 2025-12-15
:  TP 319  
基金资助: 国家重点研发计划资助项目(2024YFB3312600);浙江省“领雁”研发攻关计划资助项目(2024C01107).
通讯作者: 葛慧丽     E-mail: taoxie@cjlu.edu.cn;429362862@qq.com
作者简介: 谢涛(2001—),男,硕士生,从事图神经网络、推荐系统研究. orcid.org/0009-0000-3040-5840. E-mail:taoxie@cjlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
谢涛
葛慧丽
陈宁
汪晓锋
李延松
黄晓峰

引用本文:

谢涛,葛慧丽,陈宁,汪晓锋,李延松,黄晓峰. 知识嵌入增强的对比推荐模型[J]. 浙江大学学报(工学版), 2026, 60(1): 90-98.

Tao XIE,Huili GE,Ning CHEN,Xiaofeng WANG,Yansong LI,Xiaofeng HUANG. Knowledge embedding-enhanced contrastive recommendation model. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 90-98.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.009        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/90

图 1  知识增强的对比推荐模型整体框架
数据集mnNinterD/%NrNeNt
Yelp201845 91945 5381 183 6100.064247 472869 603
Amazon-Book70 67924 915846 4340.053929 714686 516
MIND300 00048 9572 545 3270.0290106 500746 270
表 1  数据集统计信息
模型Recall@10Recall@20Recall@30
Yelp2018Amazon-BookMINDYelp2018Amazon-BookMINDYelp2018Amazon-BookMIND
KGAT[26]0.036 50.089 20.051 80.067 50.139 00.090 70.082 70.163 80.120 3
KGIN[27]0.043 50.106 20.065 20.071 20.143 60.104 40.094 90.177 40.134 3
CKAN[28]0.039 10.087 80.059 70.068 90.138 00.099 10.085 30.162 20.128 5
KGCL[32]0.045 50.098 90.067 60.075 60.149 60.107 30.099 90.179 50.135 9
MGDCF[29]0.041 20.104 60.067 10.079 10.155 00.106 60.102 90.181 30.136 9
本研究方法0.051 90.115 20.071 90.085 80.169 10.115 10.112 30.203 70.141 2
表 2  基于Recall@K指标的推荐算法性能比较
模型NDCG@10NDCG@20NDCG@30
Yelp2018Amazon-BookMINDYelp2018Amazon-BookMINDYelp2018Amazon-BookMIND
KGAT[26]0.035 70.061 50.031 70.043 20.073 90.044 20.051 80.081 50.051 6
KGIN[27]0.036 80.062 40.039 50.046 20.074 80.052 70.053 40.082 90.059 1
CKAN[28]0.036 40.060 80.036 80.044 10.072 00.049 90.052 60.081 20.056 5
KGCL[32]0.038 50.063 20.042 50.049 30.079 30.055 10.057 30.087 40.062 0
MGDCF[29]0.035 10.068 50.042 20.051 60.083 10.056 40.061 80.091 20.062 4
本研究方法0.044 10.074 80.055 10.056 30.091 90.070 10.065 00.100 60.077 3
表 3  基于NDCG@K指标的推荐算法性能比较
NRecall@20NDCG@20
Yelp2018Amazon-BookMINDYelp2018Amazon-BookMIND
40.085 20.167 20.112 30.055 90.090 80.068 1
80.085 70.166 90.111 50.056 10.090 70.068 0
160.085 30.166 90.112 40.056 20.090 70.068 0
320.085 10.167 80.112 20.056 10.090 80.067 9
表 4  不同邻居节点采样数量N对模型性能的影响
图 2  超参数λ1和μ对模型Recall@20的影响
图 3  超参数λ1和μ对模型NDCG@20的影响
模型Recall@20NDCG@20
Yelp2018Amazon-BookMINDYelp2018Amazon-BookMIND
w/o KRA0.077 80.144 40.100 40.051 10.077 80.068 1
w/o CCL0.069 50.141 10.090 90.045 10.073 90.068 0
本研究方法0.085 80.169 10.115 10.056 30.091 90.070 1
表 5  所提模型中各组件的消融实验结果
图 4  不同模型的时间性能对比
1 KO H, LEE S, PARK Y, et al A survey of recommendation systems: recommendation models, techniques, and application fields[J]. Electronics, 2022, 11 (1): 141
doi: 10.3390/electronics11010141
2 秦川, 祝恒书, 庄福振, 等 基于知识图谱的推荐系统研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 937–956.
QIN Chuan, ZHU Hengshu, ZHUANG Fuzhen, et al. A survey on knowledge graph-based recommender systems [J]. Scientia Sinica: Informationis, 2020, 50(7): 937–956.
3 ABDUL HUSSIEN F T, RAHMA A M S, ABDUL WAHAB H B Recommendation systems for E-commerce systems an overview[J]. Journal of Physics: Conference Series, 2021, 1897 (1): 12024
doi: 10.1088/1742-6596/1897/1/012024
4 DELDJOO Y, SCHEDL M, CREMONESI P, et al Recommender systems leveraging multimedia content[J]. ACM Computing Surveys, 2021, 53 (5): 1- 38
5 郭向星, 周魏, 杨正益, 等 基于自监督图卷积和注意力机制实现隐式反馈降噪的社交推荐[J]. 电子学报, 2025, 53 (1): 151- 162
GUO Xiangxing, ZHOU Wei, YANG Zhengyi, et al Denoising implicit feedback with self-supervised graph convolution network and attention mechanism for social recommendation[J]. Acta Electronica Sinica, 2025, 53 (1): 151- 162
6 王文虎, 张德祥, 李晓鹏 基于移动互联网的大型仪器设备推荐系统的研究[J]. 信息与电脑: 理论版, 2021, 33 (20): 128- 132
WANG Wenhu, ZHANG Dexiang, LI Xiaopeng Research on large-scale instrument and equipment recommendation system based on mobile Internet[J]. China Computer & Communication, 2021, 33 (20): 128- 132
7 PERIFANIS V, EFRAIMIDIS P S Federated neural collaborative filtering[J]. Knowledge-Based Systems, 2022, 242: 108441
doi: 10.1016/j.knosys.2022.108441
8 SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: autoencoders meet collaborative filtering [C]// Proceedings of the 24th International Conference on World Wide Web. Florence: ACM, 2015: 111–112.
9 CHEN J, ZHANG H, HE X, et al. Attentive collaborative filtering: multimedia recommendation with item-and component-level attention [C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Tokyo: ACM, 2017: 335–344.
10 HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2020: 639–648.
11 WU L, HE X, WANG X, et al A survey on accuracy-oriented neural recommendation: from collaborative filtering to information-rich recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35 (5): 4425- 4445
12 HUANG C, XU H, XU Y, et al. Knowledge-aware coupled graph neural network for social recommendation [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. [S.l.]: AAAI Press, 2021: 4115–4122.
13 赵晔辉, 柳林, 王海龙, 等 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17 (4): 771- 791
ZHAO Yehui, LIU Lin, WANG Hailong, et al Survey of knowledge graph recommendation system research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17 (4): 771- 791
doi: 10.3778/j.issn.1673-9418.2205052
14 SANG L, XU M, QIAN S, et al Knowledge graph enhanced neural collaborative recommendation[J]. Expert Systems with Applications, 2021, 164: 113992
doi: 10.1016/j.eswa.2020.113992
15 BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 2013: 2787–2795.
16 YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach [C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283–292.
17 HU B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1531–1540.
18 ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017: 635–644.
19 HUANG L, GUAN C R, HUANG Z W, et al Broad recommender system: an efficient nonlinear collaborative filtering approach[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8 (4): 2843- 2857
doi: 10.1109/TETCI.2024.3378599
20 YANG D, GUO Z, WANG Z, et al. A knowledge-enhanced deep recommendation framework incorporating GAN-based models [C]// Proceedings of the IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 1368–1373.
21 DONG Y, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017: 135–144.
22 WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 417–426.
23 MA W, ZHANG M, CAO Y, et al. Jointly learning explainable rules for recommendation with knowledge graph [C]// Proceedings of the World Wide Web Conference. San Francisco: ACM, 2019: 1210–1221.
24 GAO C, ZHENG Y, LI N, et al A survey of graph neural networks for recommender systems: challenges, methods, and directions[J]. ACM Transactions on Recommender Systems, 2023, 1 (1): 1- 51
25 WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the World Wide Web Conference. San Francisco: ACM, 2019: 3307–3313.
26 WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 950–958.
27 WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation [C]// Proceedings of the Web Conference 2021. Ljubljana: ACM, 2021: 878–887.
28 WANG Z, LIN G, TAN H, et al. CKAN: collaborative knowledge-aware attentive network for recommender systems [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2020: 219–228.
29 HU J, HOOI B, QIAN S, et al MGDCF: distance learning via Markov graph diffusion for neural collaborative filtering[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (7): 3281- 3296
doi: 10.1109/TKDE.2023.3348537
30 MA T, HUANG L, LU Q, et al KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems, 2023, 41 (1): 1- 27
31 YU J, YIN H, XIA X, et al Self-supervised learning for recommender systems: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (1): 335- 355
doi: 10.1109/TKDE.2023.3282907
32 YANG Y, HUANG C, XIA L, et al. Knowledge graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022: 1434–1443.
33 WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2021: 726–735.
34 XIE X, SUN F, LIU Z, et al. Contrastive learning for sequential recommendation [C]// Proceedings of the IEEE 38th International Conference on Data Engineering. Kuala Lumpur: IEEE, 2022: 1259–1273.
35 XIA L, HUANG C, XU Y, et al. Hypergraph contrastive collaborative filtering [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022: 70–79.
36 LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning [C]// Proceedings of the ACM Web Conference. Lyon: ACM, 2022: 2320–2329.
[1] 黄文湖,赵邢,谢亮,梁浩然,梁荣华. 基于对比学习的声源定位引导视听分割模型[J]. 浙江大学学报(工学版), 2025, 59(9): 1803-1813.
[2] 侯越,李前辉,袁鹏,张鑫,王甜甜,郝紫微. 基于对比学习的可扩展交通图像自动标注方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1634-1643.
[3] 杨磊,何鹏举,丑幸幸. 基于TimeGAN数据增强的复杂过程故障分类方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1768-1780.
[4] 陈珂,张文浩. 基于对比学习的零样本对象谣言检测[J]. 浙江大学学报(工学版), 2024, 58(9): 1790-1800.
[5] 尹雅博,朱小飞,刘议丹. 源域数据增强与多兴趣细化迁移的跨域推荐模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1717-1727.
[6] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
[7] 李劲业,李永强. 融合知识图谱的时空多图卷积交通流量预测[J]. 浙江大学学报(工学版), 2024, 58(7): 1366-1376.
[8] 霍育福,金蓓弘,廖肇翊. 多模态信息增强的短视频推荐模型[J]. 浙江大学学报(工学版), 2024, 58(6): 1142-1152.
[9] 何勇禧,韩虎,孔博. 基于多依赖图和知识融合的方面级情感分析模型[J]. 浙江大学学报(工学版), 2024, 58(4): 737-747.
[10] 李松,王哲,张丽平. SL-tgStore:新的时序知识图谱存储模型[J]. 浙江大学学报(工学版), 2024, 58(3): 449-458.
[11] 杨豚,郭永存,王爽,马鑫. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版), 2024, 58(1): 29-39.
[12] 金鑫,庄建军,徐子恒. 轻量化YOLOv5s网络车底危险物识别算法[J]. 浙江大学学报(工学版), 2023, 57(8): 1516-1526.
[13] 王慧欣,童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540.
[14] 杨哲,葛洪伟,李婷. 特征融合与分发的多专家并行推荐算法框架[J]. 浙江大学学报(工学版), 2023, 57(7): 1317-1325.
[15] 李松,舒世泰,郝晓红,郝忠孝. 融合文本描述和层次类型的知识表示学习方法[J]. 浙江大学学报(工学版), 2023, 57(5): 911-920.