计算机技术 |
|
|
|
|
煤矿井下无人驾驶轨道电机车障碍物识别 |
杨豚1,3( ),郭永存1,2,3,*( ),王爽1,2,3,马鑫1,3 |
1. 安徽理工大学 深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001 2. 安徽理工大学 矿山智能装备与技术安徽省重点实验室,安徽 淮南 232001 3. 安徽理工大学 机械工程学院,安徽 淮南 232001 |
|
Obstacle recognition of unmanned rail electric locomotive in underground coal mine |
Tun YANG1,3( ),Yongcun GUO1,2,3,*( ),Shuang WANG1,2,3,Xin MA1,3 |
1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China 2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China 3. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China |
引用本文:
杨豚,郭永存,王爽,马鑫. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版), 2024, 58(1): 29-39.
Tun YANG,Yongcun GUO,Shuang WANG,Xin MA. Obstacle recognition of unmanned rail electric locomotive in underground coal mine. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 29-39.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I1/29
|
1 |
王国法 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术, 2022, 50 (1): 1- 27 WANG Guofa New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology, 2022, 50 (1): 1- 27
doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
|
2 |
葛世荣, 胡而已, 李允旺 煤矿机器人技术新进展及新方向[J]. 煤炭学报, 2023, 48 (1): 54- 73 GE Shirong, HU Eryi, LI Yunwang New progress and direction of robot technology in coal mine[J]. Journal of China Coal Society, 2023, 48 (1): 54- 73
|
3 |
韩江洪, 卫星, 陆阳, 等 煤矿井下机车无人驾驶系统关键技术[J]. 煤炭学报, 2020, 45 (6): 2104- 2115 HAN Jianghong, WEI Xing, LU Yang, et al Driverless technology of underground locomotive in coal mine[J]. Journal of China Coal Society, 2020, 45 (6): 2104- 2115
|
4 |
FARSHAD G, ESMAEEL K, MOHAMMAD R Real-time obstacle detection by stereo vision and ultrasonic data fusion[J]. Measurement, 2022, 190: 110718
doi: 10.1016/j.measurement.2022.110718
|
5 |
靳舒凯, 魏冠楠, 王春明, 等 煤矿副井矿车装载物智能识别方法[J]. 工矿自动化, 2022, 48 (4): 14- 19 JIN Shukai, WEI Guannan, WANG Chunming, et al Intelligent identification method for mine car load in coal mine auxiliary shaft[J]. Journal of Mine Automation, 2022, 48 (4): 14- 19
|
6 |
卢万杰, 付华, 赵洪瑞 基于深度学习算法的矿用巡检机器人设备识别[J]. 工程设计学报, 2019, 26 (5): 527- 533 LU Wanjie, FU Hua, ZHAO Hongrui Equipment recognition of mining patrol robot based on deep learning algorithm[J]. Chinese Journal of Engineering Design, 2019, 26 (5): 527- 533
|
7 |
李伟山, 卫晨, 王琳 改进的Faster RCNN煤矿井下行人检测算法[J]. 计算机工程与应用, 2019, 55 (4): 200- 207 LI Weishan, WEI Chen, WANG Lin Improved faster RCNN approach for pedestrian detection in underground coal mine[J]. Computer Engineering and Applications, 2019, 55 (4): 200- 207
|
8 |
PAN H, SHI Y, LEI X, et al Fast identification model for coal and gangue based on the improved tiny YOLO v3[J]. Journal of Real-Time Image Processing, 2022, 19 (3): 687- 701
doi: 10.1007/s11554-022-01215-1
|
9 |
张庆贺, 陈晨, 袁亮, 等 基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别[J]. 煤炭学报, 2022, 47 (3): 1208- 1219 ZHANG Qinghe, CHEN Chen, YUAN Liang, et al Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms[J]. Journal of China Coal Society, 2022, 47 (3): 1208- 1219
|
10 |
李飞, 胡坤, 张勇, 等 基于混合域注意力 YOLOv4 的输送带纵向撕裂多维度检测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2156- 2167 LI Fei, HU Kun, ZHANG Yong, et al Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2156- 2167
|
11 |
HOWARD A, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications. [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.1704.04861.
|
12 |
ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848–6856.
|
13 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577–1586.
|
14 |
CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.2303.03667.
|
15 |
GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021 [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.2107.08430.
|
16 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.2004.10934.
|
17 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
|
18 |
LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
19 |
曾耀, 高法钦 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2023, 57 (3): 455- 465 ZENG Yao, GAO Faqin Surface defect detection algorithm of electronic components based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (3): 455- 465
|
20 |
HE Y, LIU Z A feature fusion method to improve the driving obstacle detection under foggy weather[J]. IEEE Transactions on Transportation Electrification, 2021, 7 (4): 2505- 2515
doi: 10.1109/TTE.2021.3080690
|
21 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
22 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
23 |
HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
|
24 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2016: 779-788.
|
25 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6517-6525.
|
26 |
REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. [2023-05-15]. https://doi.org/10.48550/arXiv.1804.02767
|
27 |
徐印赟, 江明, 李云飞, 等 基于改进YOLO及NMS的水果目标检测[J]. 电子测量与仪器学报, 2022, 36 (4): 114- 123 XU Yinyun, JIANG Ming, LI Yunfei, et al Fruit target detection based on improved YOLO and NMS[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36 (4): 114- 123
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|