| 计算机技术 |
|
|
|
|
| 基于双重引导的目标对抗攻击方法 |
孙月( ),张兴兰*( ) |
| 北京工业大学 计算机学院,北京 100124 |
|
| Targeted adversarial attack method based on dual guidance |
Yue SUN( ),Xinglan ZHANG*( ) |
| School of Computer Science, Beijing University of Technology, Beijing 100124, China |
| 1 |
侯小虎, 贾晓芬, 赵佰亭 眼底病变OCT图像的轻量化识别算法[J]. 浙江大学学报: 工学版, 2023, 57 (12): 2448- 2455 HOU Xiaohu, JIA Xiaofen, ZHAO Baiting Lightweight recognition algorithm for OCT images of fundus lesions[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (12): 2448- 2455
|
| 2 |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
|
| 3 |
HU Y, YANG J, CHEN L, et al. Planning-oriented autonomous driving [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 17853–17862.
|
| 4 |
郑诚, 陈雪灵. 方面语义增强的融合网络用于方面级情感分析 [J/OL]. 小型微型计算机系统, 2024: 1–12. (2024-09-24). https://kns.cnki.net/kcms/detail/detail.aspx?filename=XXWX2024092000Q&dbname=CJFD&dbcode=CJFQ. ZHENG Cheng, CHEN Xueling. Aspect semantic enhanced fusion network for aspect-based sentiment analysis [J/OL]. Journal of Chinese Computer Systems, 2024: 1–12. (2024-09-24). https://kns.cnki.net/kcms/detail/detail.aspx?filename=XXWX2024092000Q&dbname=CJFD&dbcode=CJFQ.
|
| 5 |
秦臻, 庄添铭, 朱国淞, 等 面向人工智能模型的安全攻击和防御策略综述[J]. 计算机研究与发展, 2024, 61 (10): 2627- 2648 QIN Zhen, ZHUANG Tianming, ZHU Guosong, et al Survey of security attack and defense strategies for artificial intelligence model[J]. Journal of Computer Research and Development, 2024, 61 (10): 2627- 2648
doi: 10.7544/issn1000-1239.202440449
|
| 6 |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks [C]// International Conference on Learning Representations. Banff: International Machine Learning Society, 2014: 1-10.
|
| 7 |
BAI Y, WANG Y, ZENG Y, et al Query efficient black-box adversarial attack on deep neural networks[J]. Pattern Recognition, 2023, 133: 109037
doi: 10.1016/j.patcog.2022.109037
|
| 8 |
REN Y, ZHU H, SUI X, et al Crafting transferable adversarial examples via contaminating the salient feature variance[J]. Information Sciences, 2023, 644: 119273
doi: 10.1016/j.ins.2023.119273
|
| 9 |
DONG Y, LIAO F, PANG T, et al. Boosting adversarial attacks with momentum [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9185–9193.
|
| 10 |
CROCE F, HEIN M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks [C]// Proceedings of the International Conference on Machine Learning. [S.l.]: JMLR. org, 2020: 2206–2216.
|
| 11 |
WANG X, HE K. Enhancing the transferability of adversarial attacks through variance tuning [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1924–1933.
|
| 12 |
PENG A, LIN Z, ZENG H, et al. Boosting transferability of adversarial example via an enhanced Euler’s method [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1–5.
|
| 13 |
WANG J, CHEN Z, JIANG K, et al Boosting the transferability of adversarial attacks with global momentum initialization[J]. Expert Systems with Applications, 2024, 255: 124757
doi: 10.1016/j.eswa.2024.124757
|
| 14 |
DONG Y, PANG T, SU H, et al. Evading defenses to transferable adversarial examples by translation-invariant attacks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4307–4316.
|
| 15 |
WU L, ZHAO L, PU B, et al. Boosting the transferability of adversarial examples via adaptive attention and gradient purification methods [C]// Proceedings of the International Joint Conference on Neural Networks. Yokohama: IEEE, 2024: 1–7.
|
| 16 |
ZHU Z, CHEN H, WANG X, et al. GE-AdvGAN: improving the transferability of adversarial samples by gradient editing-based adversarial generative model [C]// Proceedings of the 2024 SIAM International Conference on Data Mining. Houston: SIAM, 2024: 706–714.
|
| 17 |
QIAN Y, HE S, ZHAO C, et al. LEA2: a lightweight ensemble adversarial attack via non-overlapping vulnerable frequency regions [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4487–4498.
|
| 18 |
LI M, DENG C, LI T, et al. Towards transferable targeted attack [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 638−646.
|
| 19 |
CHEN B, YIN J, CHEN S, et al. An adaptive model ensemble adversarial attack for boosting adversarial transferability [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 4466–4475.
|
| 20 |
LIN J, SONG C, HE K, et al. Nesterov accelerated gradient and scale invariance for improving transferability of adversarial examples [C]// International Conference on Learning Representations. [S.l.]: International Machine Learning Society, 2020: 1–12.
|
| 21 |
XIE C, ZHANG Z, ZHOU Y, et al. Improving transferability of adversarial examples with input diversity [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2725–2734.
|
| 22 |
QIAN Y, CHEN K, WANG B, et al Enhancing transferability of adversarial examples through mixed-frequency inputs[J]. IEEE Transactions on Information Forensics and Security, 2024, 19: 7633- 7645
doi: 10.1109/TIFS.2024.3430508
|
| 23 |
ZHAO Z, LIU Z, LARSON M. On success and simplicity: a second look at transferable targeted attacks [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S.l.]: NeurIPS Foundation, 2021: 6115–6128.
|
| 24 |
WU H, OU G, WU W, et al. Improving transferable targeted adversarial attacks with model self-enhancement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 24615–24624.
|
| 25 |
颜景坤. 人脸识别对抗攻击算法研究[D]. 武汉: 华中科技大学, 2020. YAN Jingkun. Research of adversarial attack method in face recognition [D]. Wuhan: Huazhong University of Science and Technology, 2020.
|
| 26 |
XIAO C, LI B, ZHU J, et al. Generating adversarial examples with adversarial networks [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: AAAI Press, 2018: 3905–3911.
|
| 27 |
MOPURI K R, UPPALA P K, BABU R V. Ask, acquire, and attack: data-free UAP generation using class impressions [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 20–35.
|
| 28 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]// International Conference on Learning Representations. San Diego: ICLR, 2015: 1–14.
|
| 29 |
KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images [R]. Toronto: University of Toronto, 2009.
|
| 30 |
NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning [C]// Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning. Granada: NeurIPS Foundation, 2011: 1–9.
|
| 31 |
LECUN Y, CORTES C, BURGES C J C The MNIST database of handwritten digits[J]. Neural Computation, 1998, 10 (5): 1191- 1232
|
| 32 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
| 33 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261–2269
|
| 34 |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks [C]// Proceedings of the British Machine Vision Conference. York: BMVA Press, 2016: 87.1–87.12.
|
| 35 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818–2826.
|
| 36 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: NeurIPS Foundation, 2012: 1097–1105.
|
| 37 |
WANG X, HE K. Enhancing the transferability of adversarial attacks through variance tuning. [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1924–1933.
|
| 38 |
LIN Q, LUO C, NIU Z, et al. Boosting adversarial transferability across model genus by deformation-constrained warping [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI Press, 2024: 3459–3467.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|