交通工程 |
|
|
|
|
基于多通道图聚合注意力机制的共享单车借还量预测 |
王福建( ),张泽天,陈喜群,王殿海 |
浙江大学 建筑工程学院 智能交通研究所,浙江 杭州 310058 |
|
Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism |
Fujian WANG( ),Zetian ZHANG,Xiqun CHEN,Dianhai WANG |
Institute of Intelligent Transportation Systems, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
王福建,张泽天,陈喜群,王殿海. 基于多通道图聚合注意力机制的共享单车借还量预测[J]. 浙江大学学报(工学版), 2025, 59(9): 1986-1995.
Fujian WANG,Zetian ZHANG,Xiqun CHEN,Dianhai WANG. Usage prediction of shared bike based on multi-channel graph aggregation attention mechanism. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1986-1995.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.022
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1986
|
1 |
YU L, FENG T, LI T, et al Demand prediction and optimal allocation of shared bikes around urban rail transit stations[J]. Urban Rail Transit, 2023, 9 (1): 57- 71
doi: 10.1007/s40864-022-00183-w
|
2 |
TANG W, YANG C, WANG H, et al Spatiotemporal demand prediction for bike sharing based on WT-ConvLSTM[J]. Advances in Civil Engineering, 2024, 2024 (1): 2551687
doi: 10.1155/adce/2551687
|
3 |
XU C, JI J, LIU P The station-free sharing bike demand forecasting with a deep learning approach and large-scale datasets[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 47- 60
doi: 10.1016/j.trc.2018.07.013
|
4 |
YANG Y, SHAO X, ZHU Y, et al Short-term forecasting of dockless bike-sharing demand with the built environment and weather[J]. Journal of Advanced Transportation, 2023, 2023 (1): 7407748
|
5 |
FENG J, LIU H An adaptive spatial-temporal method capturing for short-term bike-sharing prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (11): 16761- 16774
doi: 10.1109/TITS.2024.3406682
|
6 |
HE S, SHIN K G. Towards fine-grained flow forecasting: a graph attention approach for bike sharing systems [C]// Proceedings of the Proceedings of The Web Conference 2020. [s.l.]: ACM, 2020: 88–98.
|
7 |
GALLOP C, TSE C, ZHAO J A seasonal autoregressive model of Vancouver bicycle traffic using weather variables[J]. I-manager’s Journal on Civil Engineering, 2011, 1 (4): 1694
|
8 |
KALTENBRUNNER A, MEZA R, GRIVOLLA J, et al Urban cycles and mobility patterns: exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive and Mobile Computing, 2010, 6 (4): 455- 466
doi: 10.1016/j.pmcj.2010.07.002
|
9 |
YOON J W, PINELLI F, CALABRESE F. Cityride: a predictive bike sharing journey advisor [C]// Proceedings of the IEEE 13th International Conference on Mobile Data Management. Bengaluru: IEEE, 2012: 306–311.
|
10 |
ASHQAR H I, ELHENAWY M, ALMANNAA M H, et al. Modeling bike availability in a bike-sharing system using machine learning [C]// Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems. Naples: IEEE, 2017: 374–378.
|
11 |
SATHISHKUMAR V E, PARK J, CHO Y Using data mining techniques for bike sharing demand prediction in metropolitan city[J]. Computer Communications, 2020, 153: 353- 366
doi: 10.1016/j.comcom.2020.02.007
|
12 |
JIA R, CHAMOUN R, WALLENBRING A, et al A spatio-temporal deep learning model for short-term bike-sharing demand prediction[J]. Electronic Research Archive, 2023, 31 (2): 1031- 1047
doi: 10.3934/era.2023051
|
13 |
LIN L, HE Z, PEETA S Predicting station-level hourly demand in a large-scale bike-sharing network: a graph convolutional neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 258- 276
doi: 10.1016/j.trc.2018.10.011
|
14 |
DU L, WANG Y, SONG G, et al. Dynamic network embedding: an extended approach for skip-gram based network embedding [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018: 2086–2092.
|
15 |
PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs [C]// 34th AAAI Conference on Artificial Intelligence. New York: Elsevier, 2020: 5363–5370.
|
16 |
WEN Z, FANG Y. TREND: temporal event and node dynamics for graph representation learning [C]// Proceedings of the ACM Web Conference 2022. [s.l.]: ACM, 2022: 1159–1169.
|
17 |
YOU J, DU T, LESKOVEC J. ROLAND: graph learning framework for dynamic graphs [C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington DC: ACM, 2022: 2358–2366.
|
18 |
PAN Y, ZHENG R C, ZHANG J, et al Predicting bike sharing demand using recurrent neural networks[J]. Procedia Computer Science, 2019, 147: 562- 566
doi: 10.1016/j.procs.2019.01.217
|
19 |
MEHDIZADEH DASTJERDI A, MORENCY C Bike-sharing demand prediction at community level under COVID-19 using deep learning[J]. Sensors, 2022, 22 (3): 1060
doi: 10.3390/s22031060
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need [C]// 31st Conference on Neural Information Processing Systems. Long Beach: 2017 : 6000–6010.
|
21 |
LIU Z, GOKON H, SEKIMOTO Y Long-term demand prediction for public bicycle sharing system: a spatio-temporal attentional graph convolution networks approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (12): 21515- 21527
doi: 10.1109/TITS.2024.3469169
|
22 |
LI X, ZHANG G, CUI H, et al MCANet: a joint semantic segmentation framework of optical and SAR images for land use classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 106: 102638
doi: 10.1016/j.jag.2021.102638
|
23 |
KHAN M, GUEAIEB W, EL SADDIK A, et al MSER: multimodal speech emotion recognition using cross-attention with deep fusion[J]. Expert Systems with Applications, 2024, 245: 122946
doi: 10.1016/j.eswa.2023.122946
|
24 |
GU J, ZHOU Q, YANG J, et al Exploiting interpretable patterns for flow prediction in dockless bike sharing systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (2): 640- 652
doi: 10.1109/TKDE.2020.2988008
|
25 |
HUA M, CHEN J, CHEN X, et al Forecasting usage and bike distribution of dockless bike-sharing using journey data[J]. IET Intelligent Transport Systems, 2020, 14 (12): 1647- 1656
doi: 10.1049/iet-its.2020.0305
|
26 |
AI Y, LI Z, GAN M, et al Retraction note: a deep learning approach on short-term spatiotemporal distribution forecasting of dockless bike-sharing system[J]. Neural Computing and Applications, 2024, 36 (25): 15927
doi: 10.1007/s00521-024-10079-4
|
27 |
LIU Z, SHEN Y, ZHU Y. Inferring dockless shared bike distribution in new cities [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del Rey: ACM, 2018: 378–386.
|
28 |
ZHANG J, ZHENG Y, QI D, et al. DNN-based prediction model for spatio-temporal data [C]// Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Burlingame: ACM, 2016: 1–4.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|