Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1975-1985    DOI: 10.3785/j.issn.1008-973X.2025.09.021
机械工程     
工业机器人去冗余测量与考虑不确定度的误差补偿
司泽轩1,2(),张军1,2,刘宇庭1,2,吕贺1,郭世杰1,2,*()
1. 内蒙古工业大学 机械工程学院,内蒙古 呼和浩特 010051
2. 内蒙古自治区机器人与智能装备技术重点实验室,内蒙古 呼和浩特 010051
Industrial robot de-redundant measurement and error compensation considering uncertainty
Zexuan SI1,2(),Jun ZHANG1,2,Yuting LIU1,2,He LV1,Shijie GUO1,2,*()
1. School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2. Inner Mongolia Key Laboratory of Robotics and Intelligent Equipment Technology, Hohhot 010051, China
 全文: PDF(1711 KB)   HTML
摘要:

针对工业机器人运动学标定过程中采样点定位误差相似性导致的测量冗余、运动学参数补偿受测量不确定性影响的问题,提出去冗余轨迹测量与虑及测量不确定度的参数校准方法. 通过测量空间定位误差变差函数进行关节-末端执行器笛卡尔空间相似性表征,构建多关节同步驱动的球杆仪空间去冗余测量轨迹;构建包围与搜索策略改进的飞蛾火焰优化算法(MFO),以提升运动学逆解及误差参数辨识的精度与效率;建立基于测量参数不确定度的辨识参数动态修正策略,构建运动学补偿参数嵌套寻优方法. 误差补偿试验结果表明,基于去冗余测量与辨识结果,进行未考虑不确定度的误差补偿后,机器人定位精度提升49.83%,进行考虑不确定度的误差补偿后,相对于补偿前,机器人定位精度提升53.47%. 加工试验表明,进行考虑不确定度的误差补偿后,所加工叶轮工件相较于补偿前加工的叶轮工件,尺寸误差平均减小32.3%,形位误差平均减小38.9%.

关键词: 工业机器人去冗余测量参数辨识测量不确定度误差补偿    
Abstract:

Problems in industrial robot kinematic calibration were addressed. These included measurement redundancy caused by positioning error similarity at sampling points, and kinematic parameter compensation affected by measurement uncertainty. A parameter calibration method combining de-redundant trajectory measurement and measurement uncertainty was proposed. Firstly, the spatial positioning error variation function was measured to characterize the Cartesian space similarity between the joint and the end effector, and a spatial de-redundant measurement trajectory for the ball bar instrument with multi-joint synchronous driving was constructed. Secondly, an improved moth-flame optimization algorithm (MFO) with enhanced encirclement and search strategy was developed to enhance the accuracy and efficiency of inverse kinematics and error parameter identification. Thirdly, a dynamic correction strategy for identification parameters based on measurement parameter uncertainty was formulated, and a nested optimization method for kinematic compensation parameters was established. Finally, the error compensation test results showed that based on the results of de-redundant measurement and identification, the accuracy of the robot was improved by 49.8% after error compensation without considering uncertainty, and by 53.5% after error compensation considering uncertainty. The processing test showed that after the error compensation considering the uncertainty, the size error of the impeller workpiece was reduced by 32.3% on average and the shape and position error was reduced by 38.9% on average, compared with the impeller workpiece processed before compensation.

Key words: industrial robot    de-redundant measurement    parameter identification    measurement uncertainty    error compensation
收稿日期: 2024-12-10 出版日期: 2025-08-25
CLC:  TH 115  
基金资助: 国家自然科学基金资助项目(52365064,52365058);内蒙古关键技术攻关项目(2021GG0255);内蒙古自治区高等学校创新团队发展计划支持项目(NMGIRT2213);内蒙古自治区直属高校基本科研业务费项目(ZTY2023005,JY20230043);内蒙古自治区高等学校青年科技英才支持计划项目(NJYT23043);内蒙古自然科学基金资助项目(2023LHMS05018,2023LHMS05017);内蒙古自治区“英才兴蒙”工程团队项目(2025TEL02).
通讯作者: 郭世杰     E-mail: 1075385743@qq.com;sjguo@imut.edu.cn
作者简介: 司泽轩(2001—),男,硕士生,从事工业机器人精度补偿研究. orcid.org/0009-0001-7150-130X. E-mail:1075385743@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
司泽轩
张军
刘宇庭
吕贺
郭世杰

引用本文:

司泽轩,张军,刘宇庭,吕贺,郭世杰. 工业机器人去冗余测量与考虑不确定度的误差补偿[J]. 浙江大学学报(工学版), 2025, 59(9): 1975-1985.

Zexuan SI,Jun ZHANG,Yuting LIU,He LV,Shijie GUO. Industrial robot de-redundant measurement and error compensation considering uncertainty. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1975-1985.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.021        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1975

图 1  工业机器人及其关节坐标系
iωiqi
1[0, 0, 1][0, 0, 187]
2[0, 1, 0][0, 0, 290]
3[0, 1, 0][0, 0, 560]
4[1, 0, 0][134, 0, 630]
5[0, 1, 0][302, 0, 630]
6[1, 0, 0][374, 0, 630]
表 1  机器人运动学建模使用参数
运动学模型误差模型参数
D-H[29]Δαi、Δai、Δdi、Δθi
M-DH[30]Δαi、Δai、Δdi、Δθi
POE[31]Δζi、Δθi
表 2  误差模型参数对比
误差参数ek/mmeb/mmρ/%
Δωi0.5630.5521.95
Δli0.5630.39529.84
Δθi0.5630.16271.01
表 3  误差参数影响率
i$l_i^{\mathrm{e}}$/mm$\theta _i^{\mathrm{e}} $/(°)
1187+Δl10+Δθ1
2103+Δl20+Δθ2
3270+Δl30+Δθ3
470+Δl40+Δθ4
5134+Δl50+Δθ5
6168+Δl60+Δθ6
表 4  含有误差的机器人参数
图 2  算法迭代曲线的对比
$i $$\Delta l_{\mathrm{s}}^i $/mm$\Delta \theta _{\mathrm{s}}^i $/(°)
10.4 3650.0 007
2?0.4 5780.0 024
3?0.0 429?0.0 044
4?0.0 616?0.0 048
5?0.4 1430.0 047
60.0 1260.0 051
表 5  随机误差参数
图 3  定位误差变差函数值
图 4  采样点误差均值与方差曲线
图 5  测量轨迹示意图
图 6  飞蛾火焰辨识算法流程
图 7  嵌套补偿算法流程
图 8  去冗余轨迹测量现场
图 9  采样点不确定度区间散点图
图 10  不同种群数量下的算法迭代对比
关节误差辨识不确定度误差辨识参数修正不确定度参数修正
Δli/mmΔθi/(°)Δli/mmΔθi/(°)li/mmθi/(°)li/mmθi/(°)
1?0.106 7430.036 808?0.064 6640.026 086186.8930.0368186.9350.026 0
20.051 0480.015 275?0.060 463?0.020 891103.0510.0153102.940?0.0209
30.269 206?0.021 2150.108 7640.033 726270.269?0.0212270.1090.0337
4?0.263 183?0.166 1360.158 623?0.140 74369.736?0.166170.158?0.1407
50.070 8080.071 966?0.028 081?0.211 071134.0710.0721133.972?0.2111
60.076 5930.181 7980.046 1450.044 435168.0770.1818168.0460.0444
表 6  辨识及参数修正值
图 11  球杆仪测量轨迹补偿前后效果对比
轨迹序号不考虑不确定度补偿虑及不确定度补偿
${{e}}_{\rm{p}} $/μm${{e}}_{\rm{j}} $/μm${{e}}_{\rm{p}} $/μm${{e}}_{\rm{j}} $/μm
轨迹1补偿前99.431104.55999.431104.559
补偿后44.21754.90941.32850.623
$\varphi $/%55.5547.4858.6951.58
轨迹2补偿前104.869109.832104.869109.832
补偿后56.87661.31354.26160.445
$\varphi $/%45.7744.1848.2644.97
轨迹3补偿前179.795184.411179.795184.411
补偿后93.141102.96783.68591.950
$\varphi $/%48.1945.2953.4550.14
表 7  考虑与不考虑不确定度补偿的机械臂轨迹误差及效率对比
图 12  加工检测与比对
1 周炜, 廖文和, 田威, 等 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程, 2013, 24 (2): 174- 179
ZHOU Wei, LIAO Wenhe, TIAN Wei, et al Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J]. China Mechanical Engineering, 2013, 24 (2): 174- 179
doi: 10.3969/j.issn.1004-132X.2013.02.007
2 JUDD R P, KNASINSKI A B A technique to calibrate industrial robots with experimental verification[J]. IEEE Transactions on Robotics and Automation, 1990, 6 (1): 20- 30
doi: 10.1109/70.88114
3 VEITSCHEGGER W, WU C H Robot accuracy analysis based on kinematics[J]. IEEE Journal on Robotics and Automation, 1986, 2 (3): 171- 179
doi: 10.1109/JRA.1986.1087054
4 WU Y, KLIMCHIK A, CARO S, et al Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments[J]. Robotics and Computer-Integrated Manufacturing, 2015, 35: 151- 168
doi: 10.1016/j.rcim.2015.03.007
5 ALAM M, IBARAKI S, FUKUDA K Kinematic modeling of six-axis industrial robot and its parameter identification: a tutorial[J]. International Journal of Automation Technology, 2021, 15 (5): 599- 610
doi: 10.20965/ijat.2021.p0599
6 LIAN B Geometric error modeling of parallel manipulators based on conformal geometric algebra[J]. Advances in Applied Clifford Algebras, 2018, 28 (1): 30
doi: 10.1007/s00006-018-0831-5
7 CHEN G, LI T, CHU M, et al Review on kinematics calibration technology of serial robots[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15 (8): 1759- 1774
doi: 10.1007/s12541-014-0528-1
8 乔贵方, 杜宝安, 张颖, 等 基于POE模型的工业机器人运动学参数二次辨识方法研究[J]. 农业机械学报, 2024, 55 (1): 419- 425
QIAO Guifang, DU Baoan, ZHANG Ying, et al Quadratic identification method of kinematic parameters of industrial robots based on POE model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (1): 419- 425
doi: 10.6041/j.issn.1000-1298.2024.01.040
9 LONG P, KHALIL W, CARO S Kinematic and dynamic analysis of lower-mobility cooperative arms[J]. Robotica, 2015, 33 (9): 1813- 1834
doi: 10.1017/S0263574714001039
10 HE J, GU L, YANG G, et al A local POE-based self-calibration method using position and distance constraints for collaborative robots[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102685
doi: 10.1016/j.rcim.2023.102685
11 CHEN G L, KONG L Y, LI Q C, et al Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula[J]. Mechanism and Machine Theory, 2018, 121: 844- 856
doi: 10.1016/j.mechmachtheory.2017.11.003
12 WU L, YANG X D, CHEN K, et al A minimal POE-based model for robotic kinematic calibration with only position measurements[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12 (2): 758- 763
doi: 10.1109/TASE.2014.2328652
13 LIU Y, LI Y W, ZHUANG Z G, et al Improvement of robot accuracy with an optical tracking system[J]. Sensors, 2020, 20 (21): 6341
doi: 10.3390/s20216341
14 WANG Z, ZHANG R, KEOGH P Real-time laser tracker compensation of robotic drilling and machining[J]. Journal of Manufacturing and Materials Processing, 2020, 4 (3): 79
doi: 10.3390/jmmp4030079
15 NUBIOLA A, SLAMANI M, BONEV I A A new method for measuring a large set of poses with a single telescoping ballbar[J]. Precision Engineering, 2013, 37 (2): 451- 460
doi: 10.1016/j.precisioneng.2012.12.001
16 FERRARINI S, BILANCIA P, RAFFAELI R, et al A method for the assessment and compensation of positioning errors in industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2024, 85: 102622
doi: 10.1016/j.rcim.2023.102622
17 黄鹏, 王青, 李江雄, 等 激光跟踪仪三维坐标转换综合优化方法[J]. 计算机集成制造系统, 2015, 21 (11): 2912- 2920
HUANG Peng, WANG Qing, LI Jiangxiong, et al Comprehensive optimization for three-dimensional coordinate transformation of laser tracker[J]. Computer Integrated Manufacturing Systems, 2015, 21 (11): 2912- 2920
18 JIANG X, ZHANG D, WANG H Positioning error calibration of six-axis robot based on sub-identification space[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130 (11): 5693- 5707
19 赵业和, 刘达新, 刘振宇, 等 基于多种群竞争松鼠搜索算法的机械臂时间最优轨迹规划[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2321- 2329,2402
ZHAO Yehe, LIU Daxin, LIU Zhenyu, et al Time-optimal trajectory planning of manipulator based on multi-group competition squirrel search algorithm[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2321- 2329,2402
20 LUO G, ZOU L, WANG Z, et al A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and differential evolution hybrid algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102165
doi: 10.1016/j.rcim.2021.102165
21 ZHU Q D, XIE X R, LI C, et al Kinematic self-calibration method for dual-manipulators based on optical axis constraint[J]. IEEE Access, 2018, 7: 7768- 7782
22 CAO H Q, NGUYEN H X, TRAN T N, et al A robot calibration method using a neural network based on a butterfly and flower pollination algorithm[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (4): 3865- 3875
doi: 10.1109/TIE.2021.3073312
23 ZHAO J, ZHU X J, SONG T J Serial manipulator time-jerk optimal trajectory planning based on hybrid IWOA-PSO algorithm[J]. IEEE Access, 2022, 10: 6592- 6604
doi: 10.1109/ACCESS.2022.3141448
24 ZHANG L H, WANG Y, ZHAO X Y, et al Time-optimal trajectory planning of serial manipulator based on adaptive cuckoo search algorithm[J]. Journal of Mechanical Science and Technology, 2021, 35 (7): 3171- 3181
doi: 10.1007/s12206-021-0638-5
25 LI B, TIAN W, ZHANG C F, et al Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35 (2): 346- 360
doi: 10.1016/j.cja.2021.03.027
26 LI R, DING N, ZHAO Y, et al Real-time trajectory position error compensation technology of industrial robot[J]. Measurement, 2023, 208: 112418
doi: 10.1016/j.measurement.2022.112418
27 张泽坤, 国凯, 孙杰 基于扰动观测器的工业机器人高精度闭环鲁棒控制[J]. 机械工程学报, 2022, 58 (14): 62- 70
ZHANG Zekun, GUO Kai, SUN Jie High-precision closed-loop robust control of industrial robots based on disturbance observer[J]. Journal of Mechanical Engineering, 2022, 58 (14): 62- 70
doi: 10.3901/JME.2022.14.062
28 ZHANG L, TIAN W, ZHENG F, et al Accuracy compensation technology of closed-loop feedback of industrial robot joints[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37 (6): 858- 871
29 ZHANG T, SONG Y T, WU H P, et al A novel method to identify DH parameters of the rigid serial-link robot based on a geometry model[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2021, 48 (1): 157- 167
doi: 10.1108/IR-05-2020-0103
30 REN J, JI X X, LI J H, et al A kinematic modeling scheme of three-axis “Satcom-on-the-Move” antenna based on modified Denavit-Hartenberg method[J]. Journal of Northwestern Polytechnical University, 2023, 41 (3): 518- 528
doi: 10.1051/jnwpu/20234130518
31 WANG Y, DONG M J, ZUO G Y, et al POE-based error modeling and multiple plane constraint-based parameter identification for the kinematic calibration of a 4-UPS/SPR parallel external fixator[J]. Applied Mathematical Modelling, 2024, 133: 394- 413
doi: 10.1016/j.apm.2024.05.031
[1] 蒋沁诚,陶建峰,王洋洋,张宇磊,刘成良. 基于EWT-LSTM的工业机器人关节异常检测[J]. 浙江大学学报(工学版), 2025, 59(5): 982-994.
[2] 胡涛涛,贺韶君,王栋. 考虑层理倾角的炭质板岩蠕变损伤本构模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1704-1716.
[3] 郭万金,赵伍端,于苏扬,赵立军,曹雏清. 无先验模型曲面的机器人打磨主动自适应在线轨迹预测方法[J]. 浙江大学学报(工学版), 2023, 57(8): 1655-1666.
[4] 郭万金,赵伍端,利乾辉,赵立军,曹雏清. 基于集成概率模型的变阻抗机器人打磨力控制[J]. 浙江大学学报(工学版), 2023, 57(12): 2356-2366.
[5] 许明,张帝,戎铖,苏礼荣,王万强. 基于Bouc-Wen修正模型的柔性关节驱动器迟滞建模[J]. 浙江大学学报(工学版), 2022, 56(8): 1560-1567, 1621.
[6] 吴剑波,李俊,郑成淦,程亮. 大型龙门铺丝机综合误差建模及补偿[J]. 浙江大学学报(工学版), 2022, 56(2): 398-407.
[7] 马浩然,丁雅斌. 基于双目视觉的激光位移传感器标定方法[J]. 浙江大学学报(工学版), 2021, 55(9): 1634-1642.
[8] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[9] 董大钊,徐冠华,高继良,徐月同,傅建中. 基于机器视觉的机器人装配位姿在线校正算法[J]. 浙江大学学报(工学版), 2021, 55(1): 145-152.
[10] 郭英杰,顾钒,董辉跃,汪海晋. 压脚压紧力作用下的机器人变形预测和补偿[J]. 浙江大学学报(工学版), 2020, 54(8): 1457-1465.
[11] 冯毅雄,李康杰,高一聪,郑浩. 面向视觉伺服的工业机器人轮廓曲线角点识别[J]. 浙江大学学报(工学版), 2020, 54(8): 1449-1456.
[12] 毛晨涛,陈章位,张翔,祖洪飞. 基于相对精度指标的机器人运动学校准[J]. 浙江大学学报(工学版), 2020, 54(7): 1316-1324.
[13] 蒲陈阳,刘作军,庞爽,张燕. 知识继承型迭代学习控制的研究与应用[J]. 浙江大学学报(工学版), 2019, 53(7): 1340-1348.
[14] 董辉跃, 孙强, 郭英杰, 赵安安, 朱伟东. 机器人孔口倒角加工振动及抑制[J]. 浙江大学学报(工学版), 2018, 52(12): 2243-2252.
[15] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.