机械工程 |
|
|
|
|
工业机器人去冗余测量与考虑不确定度的误差补偿 |
司泽轩1,2( ),张军1,2,刘宇庭1,2,吕贺1,郭世杰1,2,*( ) |
1. 内蒙古工业大学 机械工程学院,内蒙古 呼和浩特 010051 2. 内蒙古自治区机器人与智能装备技术重点实验室,内蒙古 呼和浩特 010051 |
|
Industrial robot de-redundant measurement and error compensation considering uncertainty |
Zexuan SI1,2( ),Jun ZHANG1,2,Yuting LIU1,2,He LV1,Shijie GUO1,2,*( ) |
1. School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2. Inner Mongolia Key Laboratory of Robotics and Intelligent Equipment Technology, Hohhot 010051, China |
引用本文:
司泽轩,张军,刘宇庭,吕贺,郭世杰. 工业机器人去冗余测量与考虑不确定度的误差补偿[J]. 浙江大学学报(工学版), 2025, 59(9): 1975-1985.
Zexuan SI,Jun ZHANG,Yuting LIU,He LV,Shijie GUO. Industrial robot de-redundant measurement and error compensation considering uncertainty. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1975-1985.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.021
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1975
|
1 |
周炜, 廖文和, 田威, 等 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程, 2013, 24 (2): 174- 179 ZHOU Wei, LIAO Wenhe, TIAN Wei, et al Method of industrial robot accuracy compensation based on particle swarm optimization neural network[J]. China Mechanical Engineering, 2013, 24 (2): 174- 179
doi: 10.3969/j.issn.1004-132X.2013.02.007
|
2 |
JUDD R P, KNASINSKI A B A technique to calibrate industrial robots with experimental verification[J]. IEEE Transactions on Robotics and Automation, 1990, 6 (1): 20- 30
doi: 10.1109/70.88114
|
3 |
VEITSCHEGGER W, WU C H Robot accuracy analysis based on kinematics[J]. IEEE Journal on Robotics and Automation, 1986, 2 (3): 171- 179
doi: 10.1109/JRA.1986.1087054
|
4 |
WU Y, KLIMCHIK A, CARO S, et al Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments[J]. Robotics and Computer-Integrated Manufacturing, 2015, 35: 151- 168
doi: 10.1016/j.rcim.2015.03.007
|
5 |
ALAM M, IBARAKI S, FUKUDA K Kinematic modeling of six-axis industrial robot and its parameter identification: a tutorial[J]. International Journal of Automation Technology, 2021, 15 (5): 599- 610
doi: 10.20965/ijat.2021.p0599
|
6 |
LIAN B Geometric error modeling of parallel manipulators based on conformal geometric algebra[J]. Advances in Applied Clifford Algebras, 2018, 28 (1): 30
doi: 10.1007/s00006-018-0831-5
|
7 |
CHEN G, LI T, CHU M, et al Review on kinematics calibration technology of serial robots[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15 (8): 1759- 1774
doi: 10.1007/s12541-014-0528-1
|
8 |
乔贵方, 杜宝安, 张颖, 等 基于POE模型的工业机器人运动学参数二次辨识方法研究[J]. 农业机械学报, 2024, 55 (1): 419- 425 QIAO Guifang, DU Baoan, ZHANG Ying, et al Quadratic identification method of kinematic parameters of industrial robots based on POE model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (1): 419- 425
doi: 10.6041/j.issn.1000-1298.2024.01.040
|
9 |
LONG P, KHALIL W, CARO S Kinematic and dynamic analysis of lower-mobility cooperative arms[J]. Robotica, 2015, 33 (9): 1813- 1834
doi: 10.1017/S0263574714001039
|
10 |
HE J, GU L, YANG G, et al A local POE-based self-calibration method using position and distance constraints for collaborative robots[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102685
doi: 10.1016/j.rcim.2023.102685
|
11 |
CHEN G L, KONG L Y, LI Q C, et al Complete, minimal and continuous error models for the kinematic calibration of parallel manipulators based on POE formula[J]. Mechanism and Machine Theory, 2018, 121: 844- 856
doi: 10.1016/j.mechmachtheory.2017.11.003
|
12 |
WU L, YANG X D, CHEN K, et al A minimal POE-based model for robotic kinematic calibration with only position measurements[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12 (2): 758- 763
doi: 10.1109/TASE.2014.2328652
|
13 |
LIU Y, LI Y W, ZHUANG Z G, et al Improvement of robot accuracy with an optical tracking system[J]. Sensors, 2020, 20 (21): 6341
doi: 10.3390/s20216341
|
14 |
WANG Z, ZHANG R, KEOGH P Real-time laser tracker compensation of robotic drilling and machining[J]. Journal of Manufacturing and Materials Processing, 2020, 4 (3): 79
doi: 10.3390/jmmp4030079
|
15 |
NUBIOLA A, SLAMANI M, BONEV I A A new method for measuring a large set of poses with a single telescoping ballbar[J]. Precision Engineering, 2013, 37 (2): 451- 460
doi: 10.1016/j.precisioneng.2012.12.001
|
16 |
FERRARINI S, BILANCIA P, RAFFAELI R, et al A method for the assessment and compensation of positioning errors in industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2024, 85: 102622
doi: 10.1016/j.rcim.2023.102622
|
17 |
黄鹏, 王青, 李江雄, 等 激光跟踪仪三维坐标转换综合优化方法[J]. 计算机集成制造系统, 2015, 21 (11): 2912- 2920 HUANG Peng, WANG Qing, LI Jiangxiong, et al Comprehensive optimization for three-dimensional coordinate transformation of laser tracker[J]. Computer Integrated Manufacturing Systems, 2015, 21 (11): 2912- 2920
|
18 |
JIANG X, ZHANG D, WANG H Positioning error calibration of six-axis robot based on sub-identification space[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130 (11): 5693- 5707
|
19 |
赵业和, 刘达新, 刘振宇, 等 基于多种群竞争松鼠搜索算法的机械臂时间最优轨迹规划[J]. 浙江大学学报: 工学版, 2022, 56 (12): 2321- 2329,2402 ZHAO Yehe, LIU Daxin, LIU Zhenyu, et al Time-optimal trajectory planning of manipulator based on multi-group competition squirrel search algorithm[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2321- 2329,2402
|
20 |
LUO G, ZOU L, WANG Z, et al A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and differential evolution hybrid algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2021, 71: 102165
doi: 10.1016/j.rcim.2021.102165
|
21 |
ZHU Q D, XIE X R, LI C, et al Kinematic self-calibration method for dual-manipulators based on optical axis constraint[J]. IEEE Access, 2018, 7: 7768- 7782
|
22 |
CAO H Q, NGUYEN H X, TRAN T N, et al A robot calibration method using a neural network based on a butterfly and flower pollination algorithm[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (4): 3865- 3875
doi: 10.1109/TIE.2021.3073312
|
23 |
ZHAO J, ZHU X J, SONG T J Serial manipulator time-jerk optimal trajectory planning based on hybrid IWOA-PSO algorithm[J]. IEEE Access, 2022, 10: 6592- 6604
doi: 10.1109/ACCESS.2022.3141448
|
24 |
ZHANG L H, WANG Y, ZHAO X Y, et al Time-optimal trajectory planning of serial manipulator based on adaptive cuckoo search algorithm[J]. Journal of Mechanical Science and Technology, 2021, 35 (7): 3171- 3181
doi: 10.1007/s12206-021-0638-5
|
25 |
LI B, TIAN W, ZHANG C F, et al Positioning error compensation of an industrial robot using neural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35 (2): 346- 360
doi: 10.1016/j.cja.2021.03.027
|
26 |
LI R, DING N, ZHAO Y, et al Real-time trajectory position error compensation technology of industrial robot[J]. Measurement, 2023, 208: 112418
doi: 10.1016/j.measurement.2022.112418
|
27 |
张泽坤, 国凯, 孙杰 基于扰动观测器的工业机器人高精度闭环鲁棒控制[J]. 机械工程学报, 2022, 58 (14): 62- 70 ZHANG Zekun, GUO Kai, SUN Jie High-precision closed-loop robust control of industrial robots based on disturbance observer[J]. Journal of Mechanical Engineering, 2022, 58 (14): 62- 70
doi: 10.3901/JME.2022.14.062
|
28 |
ZHANG L, TIAN W, ZHENG F, et al Accuracy compensation technology of closed-loop feedback of industrial robot joints[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37 (6): 858- 871
|
29 |
ZHANG T, SONG Y T, WU H P, et al A novel method to identify DH parameters of the rigid serial-link robot based on a geometry model[J]. Industrial Robot: the International Journal of Robotics Research and Application, 2021, 48 (1): 157- 167
doi: 10.1108/IR-05-2020-0103
|
30 |
REN J, JI X X, LI J H, et al A kinematic modeling scheme of three-axis “Satcom-on-the-Move” antenna based on modified Denavit-Hartenberg method[J]. Journal of Northwestern Polytechnical University, 2023, 41 (3): 518- 528
doi: 10.1051/jnwpu/20234130518
|
31 |
WANG Y, DONG M J, ZUO G Y, et al POE-based error modeling and multiple plane constraint-based parameter identification for the kinematic calibration of a 4-UPS/SPR parallel external fixator[J]. Applied Mathematical Modelling, 2024, 133: 394- 413
doi: 10.1016/j.apm.2024.05.031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|