计算机与控制工程 |
|
|
|
|
基于TimeGAN数据增强的复杂过程故障分类方法 |
杨磊1( ),何鹏举2,3,*( ),丑幸幸4 |
1. 山西大同大学 物理与电子科学学院,山西 大同 037009 2. 西北工业大学 自动化学院,陕西 西安 710072 3. 西北工业大学 深圳研究院,广东 深圳 518057 4. 陕西科技大学 电气与控制工程学院,陕西 西安 710054 |
|
TimeGAN data augmentation-based fault classification method for complex processes |
Lei YANG1( ),Pengju HE2,3,*( ),Xingxing CHOU4 |
1. School of Physical and Electronic Sciences, Shanxi Datong University, Datong 037009, China 2. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China 3. Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen 518057, China 4. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710054, China |
1 |
LAURO C H, BRANDAO L C, BALDO D, et al Monitoring and processing signal applied in machining processes: a review[J]. Measurement, 2014, 58: 73- 86
doi: 10.1016/j.measurement.2014.08.035
|
2 |
李晗, 萧德云 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26 (1): 1- 9 LI Han, XIAO Deyun Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26 (1): 1- 9
|
3 |
刘兴, 余建波 注意力卷积GRU自编码器及其在工业过程监控的应用[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1643- 1651 LIU Xing, YU Jianbo Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1643- 1651
|
4 |
YAN S, YAN X Joint monitoring of multiple quality-related indicators in nonlinear processes based on multi-task learning[J]. Measurement, 2020, 165 (29): 108158
|
5 |
VIDAL-PUIG S, VITALE R, FERRER A Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 187: 41- 52
doi: 10.1016/j.chemolab.2019.02.006
|
6 |
韩先尧, 王宁, 申青蓉, 等 基于累计T2贡献值的乙烯裂解炉故障诊断分析[J]. 控制工程, 2021, 28 (10): 1917- 1922 HAN Xianyao, WANG Ning, SHEN Qingrong, et al Fault diagnosis analysis of ethylene cracking furnace based on accumulated T2 contribution value[J]. Control Engineering of China, 2021, 28 (10): 1917- 1922
|
7 |
WESTERHUIS J, GURDEN S, SMILDE A Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51 (1): 95- 114
doi: 10.1016/S0169-7439(00)00062-9
|
8 |
LI G, QIN S, JI Y, et al Total PLS based contribution plots for fault diagnosis[J]. Acta Automatica Sinica, 2009, 35 (6): 759- 765
|
9 |
ALCALA C, QIN S Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45 (7): 1593- 1600
doi: 10.1016/j.automatica.2009.02.027
|
10 |
ALCALA C, QIN S Analysis and generalization of fault diagnosis methods for process monitoring[J]. Journal of Process Control, 2011, 21 (3): 322- 330
doi: 10.1016/j.jprocont.2010.10.005
|
11 |
DUNIA R, QIN S Subspace approach to multidimensional fault identification and reconstruction[J]. AIChE Journal, 1998, 44: 1813- 1831
doi: 10.1002/aic.690440812
|
12 |
LI G, QIN S, ZHOU D Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models[J]. Industrial and Engineering Chemistry Research, 2010, 49 (19): 9175- 9183
doi: 10.1021/ie901939n
|
13 |
冯晓伟, 许剑锋, 何川 动态广义主成分分析及其在故障子空间建模中的应用[J]. 通信学报, 2022, 43 (5): 92- 101 FENG Xiaowei, XU Jianfeng, HE Chuan Dynamic generalized principal component analysis with applications to fault subspace modeling[J]. Journal on Communications, 2022, 43 (5): 92- 101
doi: 10.11959/j.issn.1000-436x.2022091
|
14 |
彭开香, 马亮, 张凯 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43 (3): 349- 365 PENG Kaixiang, MA Liang, ZHANG Kai Review of quality-related fault detection and diagnosis techniques for complex industrial process[J]. Acta Automatica Sinica, 2017, 43 (3): 349- 365
|
15 |
闫啸家, 梁伟阁, 张钢, 等 非均衡小样本条件下基于SAE-ACGANs的复杂供输机构故障诊断方法[J]. 振动与冲击, 2023, 42 (2): 89- 99 YAN Xiaojia, LIANG Weige, ZHANG Gang, et al Fault diagnosis method for complex feeding and ramming mechanisms based on SAE-ACGANs with unbalanced limited training data[J]. Journal of Vibration and Shock, 2023, 42 (2): 89- 99
|
16 |
JIANG X, GE Z Data augmentation classifier for imbalanced fault classification[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18 (3): 1206- 17
doi: 10.1109/TASE.2020.2998467
|
17 |
YI H, JIANG Q, YAN X, et al Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (9): 5867- 5875
doi: 10.1109/TII.2020.3046566
|
18 |
ZHANG J, LI Z, CHEN H, et al Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system[J]. Energy and Buildings, 2022, 268: 112207
doi: 10.1016/j.enbuild.2022.112207
|
19 |
ZHUO Y, GE Z Auxiliary information-guided industrial data augmentation for any-shot fault learning and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (11): 7535- 45
doi: 10.1109/TII.2021.3053106
|
20 |
ZHOU X, NIU S, LI X, et al Spatial-contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images[J]. Computational Biology and Medicine, 2023, 152: 106328
doi: 10.1016/j.compbiomed.2022.106328
|
21 |
GUO Y, ZHOU D, RUAN X, et al Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features[J]. Neural Network, 2023, 165: 491- 505
doi: 10.1016/j.neunet.2023.05.052
|
22 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN. [EB/OL]. (2017-12-06). https://arxiv.org/abs/1701. 07875.
|
23 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs. [EB/OL]. (2017-12-25). https://arxiv.org/abs/1704.00028.
|
24 |
CHAWLA N, BOWYER K, HALL L, et al SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2018, 16 (1): 321- 357
|
25 |
YOON J, JARRETT D, SCHAAR M V D. Time-series generative adversarial networks [C] // Proceedings of the 33rd International Conference on Neural Information Processing Systems . Vancouver: NeurIPS, 2019: 5508−5518.
|
26 |
SHANGGUAN A, XIE G, FEI R, et al Train wheel degradation generation and prediction based on the time series generation adversarial network[J]. Reliability Engineering and System Safety, 2023, 229: 108816
doi: 10.1016/j.ress.2022.108816
|
27 |
孙晨峰, 吕卫民, 戴洪德, 等 一种基于TimeGAN和OCSVM的多元退化设备小子样数据增广方法[J]. 电子学报, 2022, 50 (11): 2678- 2687 SUN Chenfeng, LV Weimin, DAI Hongde, et al A small sample data augmentation method for multivariate degradation equipment based on TimeGAN and OCSVM[J]. Acta Electronica Sinica, 2022, 50 (11): 2678- 2687
doi: 10.12263/DZXB.20220079
|
28 |
ZHANG X, XU Y, et al Novel manifold learning based virtual sample generation for optimizing soft sensor with small data[J]. ISA Transactions, 2021, 109: 229- 241
doi: 10.1016/j.isatra.2020.10.006
|
29 |
LEE J M, QIN S J, LEE I B Fault detection of non-linear processes using kernel independent component analysis[J]. Canadian Journal of Chemical Engineering, 2007, 85 (4): 526- 536
doi: 10.1002/cjce.5450850414
|
30 |
CHEN X, WANG J, ZHOU J Probability density estimation and Bayesian causal analysis based fault detection and root identification[J]. Industrial and Engineering Chemistry Research, 2018, 57 (43): 14656- 14664
doi: 10.1021/acs.iecr.8b03009
|
31 |
ZHANG S, ZHAO C Hybrid independent component analysis (H-ICA) with simultaneous analysis of high-order and second-order statistics for industrial process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 185: 47- 58
doi: 10.1016/j.chemolab.2018.12.014
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|