Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (9): 1768-1780    DOI: 10.3785/j.issn.1008-973X.2024.09.002
计算机与控制工程     
基于TimeGAN数据增强的复杂过程故障分类方法
杨磊1(),何鹏举2,3,*(),丑幸幸4
1. 山西大同大学 物理与电子科学学院,山西 大同 037009
2. 西北工业大学 自动化学院,陕西 西安 710072
3. 西北工业大学 深圳研究院,广东 深圳 518057
4. 陕西科技大学 电气与控制工程学院,陕西 西安 710054
TimeGAN data augmentation-based fault classification method for complex processes
Lei YANG1(),Pengju HE2,3,*(),Xingxing CHOU4
1. School of Physical and Electronic Sciences, Shanxi Datong University, Datong 037009, China
2. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
3. Shenzhen Research Institute, Northwestern Polytechnical University, Shenzhen 518057, China
4. School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710054, China
 全文: PDF(3131 KB)   HTML
摘要:

针对传统基于重构的故障分类方法在故障样本稀疏或失衡情况下效果不佳、故障子空间区分能力弱的问题,提出基于TimeGAN数据增强的复杂过程故障分类方法. 针对小子样故障,使用TimeGAN对历史故障数据进行数据增强,生成与历史数据分布相似的虚拟故障样本;采用马氏距离评估虚拟样本的质量,剔除不可信样本,构造平衡的故障样本集. 将故障样本映射到高维核空间,并在核空间中提取故障子空间. 设计故障分类策略并定义4种故障分类性能评估指标以定量衡量算法的分类性能. Tennessee Eastman应用结果表明,所提数据增强方法可以有效扩充故障样本,进而提高故障重构率. 与WGAN-GP和SMOTE方法进行对比,发现基于TimeGAN数据增强的故障分类方法具有更好的分类性能.

关键词: 故障分类样本不平衡数据增强故障子空间时间序列生成对抗网络    
Abstract:

Traditional reconstruction-based fault classification methods failed to function effectively when the fault samples were sparse or imbalanced, and the fault subspace was weakly discriminative. Aiming at the above problems, a TimeGAN data augmentation-based fault classification method for complex processes was proposed. Firstly, for less sub-sampled faults, the data enhancement of historical fault data was performed using TimeGAN to generate virtual fault samples with similar distribution to historical data. The Mahalanobis distance was used to evaluate the quality of the virtual samples, eliminating the unreliable samples and further constructing a balanced fault sample set. Secondly, the fault samples were mapped to a high-dimensional kernel space, from which the fault subspace was extracted. Finally, a fault classification strategy was designed, and four fault classification performance evaluation metrics were defined to quantify the classification performance. Results of the Tennessee Eastman showed that the proposed TimeGAN can effectively enlarge the fault samples and improve the fault reconstruction rate. Compared to the WGAN-GP and SMOTE, the fault classification method based on TimeGAN data augmentation had better classification performance.

Key words: fault classification    imbalanced sample    data augmentation    fault subspace    time-series generative adversarial network
收稿日期: 2023-09-05 出版日期: 2024-08-30
CLC:  TP 273  
基金资助: 山西省高等学校科技创新资助项目(2022L436);西安市科技计划资助项目(2017086CG/RC049);深圳市科技计划资助项目(JCYJ20170306154611415);山西大同大学科研基金资助项目(2020CXZ2).
通讯作者: 何鹏举     E-mail: yangleidtdx@163.com;pengjuhe1@163.com
作者简介: 杨磊(1988—),男,讲师,从事机器学习算法和故障诊断研究. orcid.org/0009-0004-0175-7520. E-mail:yangleidtdx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
杨磊
何鹏举
丑幸幸

引用本文:

杨磊,何鹏举,丑幸幸. 基于TimeGAN数据增强的复杂过程故障分类方法[J]. 浙江大学学报(工学版), 2024, 58(9): 1768-1780.

Lei YANG,Pengju HE,Xingxing CHOU. TimeGAN data augmentation-based fault classification method for complex processes. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1768-1780.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.002        https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1768

图 1  TimeGAN 模型结构图
图 2  基于数据增强的故障分类方法流程图
故障
类型
历史故障数据N2验证故障
数据
来源N1
1d01中随机选择400400d01_te
2d02中随机选择40400d02_te
6d06中随机选择20400d06_te
7d07中随机选择200400d07_te
12d12中随机选择60400d12_te
14d14中随机选择20400d14_te
表 1  故障样本数据设置
自编码网络参数数值生成对抗网络参数数值
采样时间步长18生成器噪声层数32
特征维数52GAN隐藏层数24
隐藏层层数1判别器真实损失1
学习率5×10?4
表 2  TimeGAN网络参数设置表
图 3  不同故障模式下的故障样本三维空间分布
图 4  故障样本不平衡条件下的重构恢复率混淆矩阵
图 5  故障样本不平衡情况下的故障重构情况
图 6  用不同故障子空间重构故障7
图 7  数据增强后的重构恢复率混淆矩阵
图 8  数据增强后故障重构
提取子空间
所用数据
P/%R/%F1/%
故障1故障2故障6故障7故障12故障14故障1故障2故障6故障7故障12故障14故障1故障2故障6故障7故障12故障14
不平衡故障样本95.5676.3578.2685.3761.7073.2199.5079.5076.5084.6264.2571.3797.4977.8977.3785.0062.9572.28
数据增
强后故
障样本
WGAN-GP98.7099.48100.0099.0387.0498.2695.2596.50100.0089.7598.2598.8896.9597.97100.0094.1692.3198.57
SMOTE95.5698.7195.8599.0386.9398.5199.5095.7598.1289.7598.1299.1297.4997.2196.9794.1692.1998.82
TimeGAN99.12100.00100.0099.8792.33100.0098.8897.75100.0095.1399.3899.6299.0098.86100.0097.4495.7399.81
全部真实故障样本99.87100.00100.0099.8791.58100.0099.8897.88100.0098.2599.7598.1299.8798.93100.0099.0595.4999.05
表 3  不同故障模式下的故障分类性能评价指标
图 9  不同故障模式下的F1得分
图 10  在线样本故障重构
图 11  在线故障样本分类结果
1 LAURO C H, BRANDAO L C, BALDO D, et al Monitoring and processing signal applied in machining processes: a review[J]. Measurement, 2014, 58: 73- 86
doi: 10.1016/j.measurement.2014.08.035
2 李晗, 萧德云 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26 (1): 1- 9
LI Han, XIAO Deyun Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26 (1): 1- 9
3 刘兴, 余建波 注意力卷积GRU自编码器及其在工业过程监控的应用[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1643- 1651
LIU Xing, YU Jianbo Attention convolutional GRU-based autoencoder and its application in industrial process monitoring[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1643- 1651
4 YAN S, YAN X Joint monitoring of multiple quality-related indicators in nonlinear processes based on multi-task learning[J]. Measurement, 2020, 165 (29): 108158
5 VIDAL-PUIG S, VITALE R, FERRER A Data-driven supervised fault diagnosis methods based on latent variable models: a comparative study[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 187: 41- 52
doi: 10.1016/j.chemolab.2019.02.006
6 韩先尧, 王宁, 申青蓉, 等 基于累计T2贡献值的乙烯裂解炉故障诊断分析[J]. 控制工程, 2021, 28 (10): 1917- 1922
HAN Xianyao, WANG Ning, SHEN Qingrong, et al Fault diagnosis analysis of ethylene cracking furnace based on accumulated T2 contribution value[J]. Control Engineering of China, 2021, 28 (10): 1917- 1922
7 WESTERHUIS J, GURDEN S, SMILDE A Generalized contribution plots in multivariate statistical process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51 (1): 95- 114
doi: 10.1016/S0169-7439(00)00062-9
8 LI G, QIN S, JI Y, et al Total PLS based contribution plots for fault diagnosis[J]. Acta Automatica Sinica, 2009, 35 (6): 759- 765
9 ALCALA C, QIN S Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45 (7): 1593- 1600
doi: 10.1016/j.automatica.2009.02.027
10 ALCALA C, QIN S Analysis and generalization of fault diagnosis methods for process monitoring[J]. Journal of Process Control, 2011, 21 (3): 322- 330
doi: 10.1016/j.jprocont.2010.10.005
11 DUNIA R, QIN S Subspace approach to multidimensional fault identification and reconstruction[J]. AIChE Journal, 1998, 44: 1813- 1831
doi: 10.1002/aic.690440812
12 LI G, QIN S, ZHOU D Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models[J]. Industrial and Engineering Chemistry Research, 2010, 49 (19): 9175- 9183
doi: 10.1021/ie901939n
13 冯晓伟, 许剑锋, 何川 动态广义主成分分析及其在故障子空间建模中的应用[J]. 通信学报, 2022, 43 (5): 92- 101
FENG Xiaowei, XU Jianfeng, HE Chuan Dynamic generalized principal component analysis with applications to fault subspace modeling[J]. Journal on Communications, 2022, 43 (5): 92- 101
doi: 10.11959/j.issn.1000-436x.2022091
14 彭开香, 马亮, 张凯 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43 (3): 349- 365
PENG Kaixiang, MA Liang, ZHANG Kai Review of quality-related fault detection and diagnosis techniques for complex industrial process[J]. Acta Automatica Sinica, 2017, 43 (3): 349- 365
15 闫啸家, 梁伟阁, 张钢, 等 非均衡小样本条件下基于SAE-ACGANs的复杂供输机构故障诊断方法[J]. 振动与冲击, 2023, 42 (2): 89- 99
YAN Xiaojia, LIANG Weige, ZHANG Gang, et al Fault diagnosis method for complex feeding and ramming mechanisms based on SAE-ACGANs with unbalanced limited training data[J]. Journal of Vibration and Shock, 2023, 42 (2): 89- 99
16 JIANG X, GE Z Data augmentation classifier for imbalanced fault classification[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18 (3): 1206- 17
doi: 10.1109/TASE.2020.2998467
17 YI H, JIANG Q, YAN X, et al Imbalanced classification based on minority clustering synthetic minority oversampling technique with wind turbine fault detection application[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (9): 5867- 5875
doi: 10.1109/TII.2020.3046566
18 ZHANG J, LI Z, CHEN H, et al Integrated generative networks embedded with ensemble classifiers for fault detection and diagnosis under small and imbalanced data of building air condition system[J]. Energy and Buildings, 2022, 268: 112207
doi: 10.1016/j.enbuild.2022.112207
19 ZHUO Y, GE Z Auxiliary information-guided industrial data augmentation for any-shot fault learning and diagnosis[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (11): 7535- 45
doi: 10.1109/TII.2021.3053106
20 ZHOU X, NIU S, LI X, et al Spatial-contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images[J]. Computational Biology and Medicine, 2023, 152: 106328
doi: 10.1016/j.compbiomed.2022.106328
21 GUO Y, ZHOU D, RUAN X, et al Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features[J]. Neural Network, 2023, 165: 491- 505
doi: 10.1016/j.neunet.2023.05.052
22 ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN. [EB/OL]. (2017-12-06). https://arxiv.org/abs/1701. 07875.
23 GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs. [EB/OL]. (2017-12-25). https://arxiv.org/abs/1704.00028.
24 CHAWLA N, BOWYER K, HALL L, et al SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2018, 16 (1): 321- 357
25 YOON J, JARRETT D, SCHAAR M V D. Time-series generative adversarial networks [C] // Proceedings of the 33rd International Conference on Neural Information Processing Systems . Vancouver: NeurIPS, 2019: 5508−5518.
26 SHANGGUAN A, XIE G, FEI R, et al Train wheel degradation generation and prediction based on the time series generation adversarial network[J]. Reliability Engineering and System Safety, 2023, 229: 108816
doi: 10.1016/j.ress.2022.108816
27 孙晨峰, 吕卫民, 戴洪德, 等 一种基于TimeGAN和OCSVM的多元退化设备小子样数据增广方法[J]. 电子学报, 2022, 50 (11): 2678- 2687
SUN Chenfeng, LV Weimin, DAI Hongde, et al A small sample data augmentation method for multivariate degradation equipment based on TimeGAN and OCSVM[J]. Acta Electronica Sinica, 2022, 50 (11): 2678- 2687
doi: 10.12263/DZXB.20220079
28 ZHANG X, XU Y, et al Novel manifold learning based virtual sample generation for optimizing soft sensor with small data[J]. ISA Transactions, 2021, 109: 229- 241
doi: 10.1016/j.isatra.2020.10.006
29 LEE J M, QIN S J, LEE I B Fault detection of non-linear processes using kernel independent component analysis[J]. Canadian Journal of Chemical Engineering, 2007, 85 (4): 526- 536
doi: 10.1002/cjce.5450850414
30 CHEN X, WANG J, ZHOU J Probability density estimation and Bayesian causal analysis based fault detection and root identification[J]. Industrial and Engineering Chemistry Research, 2018, 57 (43): 14656- 14664
doi: 10.1021/acs.iecr.8b03009
31 ZHANG S, ZHAO C Hybrid independent component analysis (H-ICA) with simultaneous analysis of high-order and second-order statistics for industrial process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 185: 47- 58
doi: 10.1016/j.chemolab.2018.12.014
[1] 尹雅博,朱小飞,刘议丹. 源域数据增强与多兴趣细化迁移的跨域推荐模型[J]. 浙江大学学报(工学版), 2024, 58(8): 1717-1727.
[2] 杨豚,郭永存,王爽,马鑫. 煤矿井下无人驾驶轨道电机车障碍物识别[J]. 浙江大学学报(工学版), 2024, 58(1): 29-39.
[3] 金鑫,庄建军,徐子恒. 轻量化YOLOv5s网络车底危险物识别算法[J]. 浙江大学学报(工学版), 2023, 57(8): 1516-1526.
[4] 艾青林,崔景瑞,吕冰海,童桐. 基于损伤区域融合变换的轴承鼓形滚子表面损伤检测方法[J]. 浙江大学学报(工学版), 2023, 57(5): 1009-1020.
[5] 艾青林,杨佳豪,崔景瑞. 基于自适应增殖数据增强与全局特征融合的小目标行人检测[J]. 浙江大学学报(工学版), 2023, 57(10): 1933-1944.
[6] 詹燕,胡蝶,汤洪涛,鲁建厦,谭健,刘长睿. 基于改进生成对抗网络的图像数据增强方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1998-2010.
[7] 刘坤,文熙,黄闽茗,杨欣欣,毛经坤. 基于生成对抗网络的太阳能电池缺陷增强方法[J]. 浙江大学学报(工学版), 2020, 54(4): 684-693.
[8] 乔美英,汤夏夏,闫书豪,史建柯. 基于改进稀疏滤波与深度网络融合的轴承故障诊断[J]. 浙江大学学报(工学版), 2020, 54(12): 2301-2309.
[9] 王日俊, 赵常均, 白越, 曾志强, 杜文华, 段能全. 基于多故障分类的Hex-Rotor无人飞行器的执行单元故障检测与自重构[J]. 浙江大学学报(工学版), 2018, 52(7): 1406-1414.
[10] 朱东阳, 沈静逸, 黄炜平, 梁军. 基于主动学习和加权支持向量机的工业故障识别[J]. 浙江大学学报(工学版), 2017, 51(4): 697-705.