计算机技术、自动化技术 |
|
|
|
|
基于改进生成对抗网络的图像数据增强方法 |
詹燕( ),胡蝶,汤洪涛,鲁建厦,谭健,刘长睿 |
浙江工业大学 机械工程学院,浙江 杭州 310023 |
|
Image data enhancement method based on improved generative adversarial network |
Yan ZHAN( ),Die HU,Hong-tao TANG,Jian-sha LU,Jian TAN,Chang-rui LIU |
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China |
引用本文:
詹燕,胡蝶,汤洪涛,鲁建厦,谭健,刘长睿. 基于改进生成对抗网络的图像数据增强方法[J]. 浙江大学学报(工学版), 2023, 57(10): 1998-2010.
Yan ZHAN,Die HU,Hong-tao TANG,Jian-sha LU,Jian TAN,Chang-rui LIU. Image data enhancement method based on improved generative adversarial network. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1998-2010.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.009
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1998
|
1 |
康守强, 胡明武, 王玉静, 等 基于特征迁移学习的变工况下滚动轴承故障诊断方法[J]. 中国电机工程学报, 2019, 39 (3): 764- 772 KANG Shou-qiang, HU Ming-wu, WANG Yu-jing, et al Fault diagnosis method of a rolling bearing under variable working conditions based on feature transfer learning[J]. Proceedings of the CSEE, 2019, 39 (3): 764- 772
doi: 10.13334/J.0258-8013.PCSEE.180130
|
2 |
肖雄, 肖宇雄, 张勇军, 等 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41 (2): 738- 749 XIAO Xiong, XIAO Yu-xiong, ZHANG Yong-jun, et al Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE, 2021, 41 (2): 738- 749
doi: 10.13334/j.0258-8013.pcsee.200834
|
3 |
PAN S J, YANG Q A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359
|
4 |
SALAKHUTDINOV R, LAROCHELLE H. Efficient learning of deep Boltzmann machines [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: JMLR, 2010: 693-700.
|
5 |
BENGIO Y, LAUFER E, ALAIN G, et al. Deep generative stochastic networks trainable by backprop [C]// International Conference on Machine Learning. Beijing: PMLR, 2014: 226-234.
|
6 |
KINGMA D P, WELLING M. Auto-encoding variational bayes [EB/OL]. [2013-12-20]. https://arxiv.org/abs/1312.6114.
|
7 |
VANDEN OORD A, KALCHBRENNER N, ESPEHOLT L, et al. Conditional image generation with pixel-cnn decoders [C]// 30th Conference on Neural Information Processing Systems. Barcelona: CA, 2016: 4797-4805.
|
8 |
VAN OORD A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks [C]// International Conference on Machine Learning. New York: JMLR, 2016: 1747-1756.
|
9 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial networks[J]. Communications of the ACM, 2020, 63 (11): 139- 144
doi: 10.1145/3422622
|
10 |
MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. [2014-11-06]. https://arxiv.org/abs/1411.1784.
|
11 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. [2015-11-19]. https://arxiv.org/abs/1511.06434.
|
12 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]// International Conference on Machine Learning. Sydney: PMLR, 2017: 214-223.
|
13 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of wasserstein gans [EB/OL]. [2017-03-31]. https://arxiv.org/abs/1704.00028.
|
14 |
BERTHELOT D, SCHUMM T, METZ L. Boundary equilibrium generative adversarial networks [EB/OL]. [2017-03-21]. https://arxiv.org/abs/1703.10717.
|
15 |
KARRAS T, AILA T, LAINE S, et al. Progressive growing of gans for improved quality, stability, and variation [C]// International Conference on Learning Representations. Vancouver: JMLR, 2018: 26.
|
16 |
KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks [C]// CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4396-4405.
|
17 |
KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of style GAN [C]// CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8107-8116.
|
18 |
KARRAS T, AITTALA M, LAINE S, et al Alias-free generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2021, 34: 852- 863
|
19 |
DONG C, LOY C C, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (2): 295- 307
|
20 |
DEON A F, MENYAEV Y A Twister generator of random normal numbers by box-muller model[J]. International Journal of Trends in Computer Science, 2020, 16 (1): 1- 13
|
21 |
何新林, 戚宗锋, 李建勋 基于隐变量后验生成对抗网络的不平衡学习[J]. 上海交通大学学报, 2021, 55 (5): 557- 565 HE Xin-lin, QI Zong-feng, LI Jian-xun Unbalanced learning of generative adversarial network based on latent posterior[J]. Journal of Shanghai Jiaotong University, 2021, 55 (5): 557- 565
doi: 10.16183/j.cnki.jsjtu.2019.264
|
22 |
ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks [EB/OL]. [2017-01-17]. https://arxiv.org/abs/1701.04862.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|