计算机技术、自动化技术 |
|
|
|
|
基于模态注意力图卷积特征融合的EEG和fNIRS情感识别 |
赵卿( ),张雪英*( ),陈桂军,张静 |
太原理工大学 信息与计算机学院,山西 太原 030024 |
|
EEG and fNIRS emotion recognition based on modality attention graph convolution feature fusion |
Qing ZHAO( ),Xue-ying ZHANG*( ),Gui-jun CHEN,Jing ZHANG |
College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
赵卿,张雪英,陈桂军,张静. 基于模态注意力图卷积特征融合的EEG和fNIRS情感识别[J]. 浙江大学学报(工学版), 2023, 57(10): 1987-1997.
Qing ZHAO,Xue-ying ZHANG,Gui-jun CHEN,Jing ZHANG. EEG and fNIRS emotion recognition based on modality attention graph convolution feature fusion. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 1987-1997.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.008
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I10/1987
|
1 |
吴朝晖 类脑研究: 为人类构建超级大脑[J]. 浙江大学学报: 工学版, 2020, 54 (3): 425- 426 WU Zhao-hui Cybrain: building superbrain for humans[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 425- 426
|
2 |
PANKSEPP J Neuro-psychoanalysis may enliven the mind brain sciences[J]. Cortex, 2007, 8 (43): 1106- 1107
|
3 |
BRUN N C, MOEN A, BORCH K, et al Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets[J]. American Journal of Physiology-Heart and Circulatory Physiology, 1997, 273 (2): 682- 686
doi: 10.1152/ajpheart.1997.273.2.H682
|
4 |
QIU L, ZHONG Y, XIE Q, et al. Multi-modal integration of EEG-fNIRS for characterization of brain activity evoked by preferred music [EB/OL]. [2022-01-31]. https://doi.org/10.3389/fnbot.2022.823435.
|
5 |
KOELSTRA S, MUHL C, SOLEYMANI M, et al Deap: a database for emotion analysis, using physiological signals[J]. IEEE Transactions on Affective Computing, 2011, 3 (1): 18- 31
|
6 |
ZHENG W L, LU B L Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7 (3): 162- 175
doi: 10.1109/TAMD.2015.2431497
|
7 |
SHEN F, DAI G, LIN G, et al EEG-based emotion recognition using 4D convolutional recurrent neural network[J]. Cognitive Neurodynamics, 2020, 14 (6): 815- 828
doi: 10.1007/s11571-020-09634-1
|
8 |
CUI F, WANG R, DING W, et al A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition[J]. Mathematics, 2022, 10 (4): 582
doi: 10.3390/math10040582
|
9 |
BANDARA D, VELIPASALAR S, BRATT S, et al Building predictive models of emotion with functional near-infrared spectroscopy[J]. International Journal of Human-Computer Studies, 2018, 110: 75- 85
doi: 10.1016/j.ijhcs.2017.10.001
|
10 |
HU X, ZHUANG C, WANG F, et al fNIRS evidence for recognizably different positive emotions[J]. Frontiers in Human Neuroscience, 2019, 13: 120
doi: 10.3389/fnhum.2019.00120
|
11 |
高宇航, 司娟宁, 何江弘, 等 脑电与功能近红外光谱技术在脑机接口中的应用[J]. 北京生物医学工程, 2022, 41 (3): 318- 325 GAO Yu-hang, SI Juan-ning, HE Jiang-hong, et al Applications of EEG and fNIRS in brain computer interface[J]. Beijing Biomedical Engineering, 2022, 41 (3): 318- 325
doi: 10.3969/j.issn.1002-3208.2022.03.019
|
12 |
SUN Z, HUANG Z, DUAN F, et al A novel multimodal approach for hybrid brain–computer interface[J]. IEEE Access, 2020, 8: 89909- 89918
doi: 10.1109/ACCESS.2020.2994226
|
13 |
DELIGANI R J, BORGHEAI S B, MCLINDEN J, et al Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework[J]. Biomedical Optics Express, 2021, 12 (3): 1635- 1650
doi: 10.1364/BOE.413666
|
14 |
王恩慧. 基于EEG-fNIRS的情绪识别系统研究[D]. 长春: 吉林大学, 2020: 48-50. WANG En-hui. Research of emotion recognition system based on EEG-fNIRS [D]. Changchun: Jilin University, 2020: 48-50.
|
15 |
SUN Y, AYAZ H, AKANSU A N Multimodal affective state assessment using fNIRS+EEG and spontaneous facial expression[J]. Brain Sciences, 2020, 10 (2): 85- 105
doi: 10.3390/brainsci10020085
|
16 |
吴文一. 基于EEG-fNIRS特征融合的多强度负性情绪识别研究[D]. 天津: 天津大学, 2021: 35-47. WU Wen-yi. Research on multi-intensity negative emotion recognition based on EEG-fNIRS feature fusion [D]. Tianjin: Tianjin University, 2021: 35-47.
|
17 |
LI J, LI S, PAN J, et al. Cross-subject EEG emotion recognition with self-organized graph neural network [EB/OL]. [2021-06-09]. https://doi.org/10.3389/fnins.2021.611653.
|
18 |
SONG T, ZHENG W, SONG P, et al EEG emotion recognition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2018, 11 (3): 532- 541
|
19 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2016-09-09]. http://doi.org/10.48550/arxiv.1609.02907.
|
20 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [EB/OL]. [2016-06-30]. https://doi.org/10.48550/arXiv.1606.09375.
|
21 |
HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. [2017-06-07]. https://doi.org/10.48550/arXiv.1706.02216.
|
22 |
VELIKOVI P , CUCURULL G , CASANOVA A , et al. Graph attention networks[EB/OL]. 2017. /arxiv. 1710.10903.
|
23 |
张静, 张雪英, 陈桂军, 等 结合3D-CNN和频-空注意力机制的EEG情感识别[J]. 西安电子科技大学学报, 2022, 49 (3): 191- 198 ZHANG Jing, ZHANG Xue-ying, CHEN Gui-jun, et al EEG emotion recognition based on the 3D-CNN and spatial-frequency attention mechanism[J]. Journal of Xidian University, 2022, 49 (3): 191- 198
|
24 |
SONG T, ZHENG W, LU C, et al MPED: a multi-modal physiological emotion database for discrete emotion recognition[J]. IEEE Access, 2019, 7: 12177- 12191
doi: 10.1109/ACCESS.2019.2891579
|
25 |
SCHAEFER A, NILS F, SANCHEZ X, et al Assessing the effectiveness of a large database of emotion-eliciting films: a new tool for emotion researchers[J]. Cognition and Emotion, 2010, 24 (7): 1153- 1172
doi: 10.1080/02699930903274322
|
26 |
BRADLEY M M, LANG P J Measuring emotion: the self-assessment manikin and the semantic differential[J]. Journal of Behavior Therapy and Experimental Psychiatry, 1994, 25 (1): 49- 59
doi: 10.1016/0005-7916(94)90063-9
|
27 |
SCHOLKMANN F, KLEISER S, METZ A J, et al A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology[J]. Neuroimage, 2014, 85: 6- 27
doi: 10.1016/j.neuroimage.2013.05.004
|
28 |
ZHANG G, YU M, LIU Y J, et al. SparseDGCNN: recognizing emotion from multichannel EEG signals [EB/OL]. [2021-01-13]. https://doi.org/10.1109/TAFFC.2021.3051332.
|
29 |
DUAN R N, ZHU J Y, LU B L. Differential entropy feature for EEG-based emotion classification [C]// 6th International IEEE/EMBS Conference on Neural Engineering(NER). San Diego: IEEE, 2013: 81-84.
|
30 |
BAO G, YANG K, TONG L, et al. Linking multi-layer dynamical GCN with style-based recalibration CNN for EEG-based emotion recognition [EB/OL].[2022-02-24]. https://doi.org/10.3389/fnbot.2022.834952.
|
31 |
ACHARD S, BULLMORE E Efficiency and cost of economical brain functional networks[J]. PLoS Computational Biology, 2007, 3 (2): 174- 183
|
32 |
LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: ACL, 2018: 2247-2256.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|