自动化技术、计算机技术 |
|
|
|
|
基于特征融合的语言想象脑电信号分类 |
张灵维(),周正东*(),许云飞,王嘉文,吉文韬,宋泽峰 |
南京航空航天大学 航空学院,江苏 南京 210016 |
|
Classification of imagined speech EEG signals based on feature fusion |
Ling-wei ZHANG(),Zheng-dong ZHOU*(),Yun-fei XU,Jia-wen WANG,Wen-tao JI,Ze-feng SONG |
College of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
引用本文:
张灵维,周正东,许云飞,王嘉文,吉文韬,宋泽峰. 基于特征融合的语言想象脑电信号分类[J]. 浙江大学学报(工学版), 2023, 57(4): 726-734.
Ling-wei ZHANG,Zheng-dong ZHOU,Yun-fei XU,Jia-wen WANG,Wen-tao JI,Ze-feng SONG. Classification of imagined speech EEG signals based on feature fusion. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 726-734.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.04.010
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I4/726
|
1 |
VAUGHAN T, HEETDERKS W, TREJO L, et al Brain-computer interface technology: a review of the second international meeting[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11 (2): 94- 109
doi: 10.1109/TNSRE.2003.814799
|
2 |
PUTZE F, SCHULTZ T Adaptive cognitive technical systems[J]. Journal of Neuroscience Methods, 2014, (234): 108- 115
|
3 |
LEE S H, LEE M, LEE S W. EEG representations of spatial and temporal features in imagined speech and overt speech [C]// Asian Conference on Pattern Recognition. Cham: Springer, 2019: 387-400.
|
4 |
PIOTR W, DARIUSZ Z, GRZEGORZ M, et al Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis[J]. Frontiers in Neuroinformatics, 2018, (12): 78
|
5 |
AMIRI S, RABBI A, AZINFAR L, et al. A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems [M]// Brain-computer interface systems: recent progress and future prospects. Fargo: Intech, 2013.
|
6 |
ROSENFELD J, HU X, LABKOVSKY E, et al Review of recent studies and issues regarding the P300-based complex trial protocol for detection of concealed information[J]. International Journal of Psychophysiology, 2013, 90 (2): 118- 134
doi: 10.1016/j.ijpsycho.2013.08.012
|
7 |
于淑月, 李想, 于功敬, 等 脑机接口技术的发展与展望[J]. 计算机测量与控制, 2019, (10): 5- 12 YU Shu-yue, LI Xiang, YU Gong-jing, et al Development and prospect of brain-computer interface technology[J]. Computer Measurement and Control, 2019, (10): 5- 12
|
8 |
WESTER M. Unspoken speech-speech recognition based on electroencephalography [D]. Karlsruher: University of Karlsruhe, 2006.
|
9 |
TORRES A, REYES A, VILLASENOR L, et al Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification[J]. Expert Systems with Applications, 2016, (59): 1- 12
|
10 |
QURESHI I, MIN B, PARK H, et al Multiclass classification of word imagination speech with hybrid connectivity features[J]. IEEE Transactions on Biomedical Engineering, 2017, 65 (10): 2168- 2177
|
11 |
HASHIM N, ALI A, MOHD N. Word-based classification of imagined speech using EEG [C]// International Conference on Computational Science and Technology. Singapore: Springer, 2017: 195-204.
|
12 |
LEE S, LEE M, JEONG H, et al. Towards an EEG-based intuitive BCI communication system using imagined speech and visual imagery [C]// 2019 IEEE International Conference on Systems, Man and Cybernetics. Bari: IEEE, 2019.
|
13 |
SRIRAAM N, RAGHU S Classification of focal and non focal epileptic seizures using multi-features and SVM classifier[J]. Journal of Medical Systems, 2017, 41 (10): 160
doi: 10.1007/s10916-017-0800-x
|
14 |
MA L, ZHANG T, DONG C A novel ECG data compression method using adaptive Fourier decomposition with security guarantee in e-health applications[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19 (3): 986- 994
doi: 10.1109/JBHI.2014.2357841
|
15 |
ZENG W, LI M, YUAN C, et al Identification of epileptic seizures in EEG signals using time-scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks[J]. Artificial Intelligence Review, 2020, 53 (4): 3059- 3088
doi: 10.1007/s10462-019-09755-y
|
16 |
HUANG E, SHEN Z, LONG R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
|
17 |
GAUR P, KAUSHIK G, PACHORI B, et al. Comparison analysis: single and multichannel EMD-based filtering with application to BCI [C]// Machine Intelligence and Signal Analysis. Singapore: Springer, 2019.
|
18 |
SHARMA R, PACHORI B. Automated classification of focal and non-focal EEG signals based on bivariate empirical mode decomposition [M]// Biomedical Signal and Image Processing in Patient Care. Indore: IGI, 2017.
|
19 |
GAUR P, PACHORI B, HUI W, et al. An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface [C]// The International Joint Conference on Neural Networks. Killarney: IEEE, 2015.
|
20 |
CORETTO P, LEPORE N, BRIEVA J, et al. Open access database of EEG signals recorded during imagined speech [C]// 12th International Symposium on Medical Information Processing and Analysis. Tandil: SPIE, 2017: 1016002.
|
21 |
LI G, WANG S, LI M, et al Towards real-life EEG applications: novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically ‘charge–discharge’electrolyte[J]. Journal of Neural Engineering, 2021, 18 (4): 046016
doi: 10.1088/1741-2552/abeeab
|
22 |
CAO Y, OOSTENVELD R, ALDAY M, et al Are alpha and beta oscillations spatially dissociated over the cortex in context-driven spoken-word production?[J]. Psychophysiology, 2022, (6): e13999
|
23 |
ALYASSERI A, KHADER T, Al A, et al. EEG signal denoising using hybridizing method between wavelet transform with genetic algorithm [C]// Proceedings of the 11th National Technical Seminar on Unmanned System Technology. Singapore: Springer, 2021: 449-469.
|
24 |
ALBORZ R, ROBERT T, AURELIEN B, et al EEG classification of covert speech using regularized neural networks[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2017, 25 (12): 2292- 2300
doi: 10.1109/TASLP.2017.2758164
|
25 |
李明阳, 陈万忠, 张涛 基于DD-DWT和Log-Logistic参数回归的癫痫脑电自动识别方法[J]. 仪器仪表学报, 2017, 38 (6): 1368- 1377 LI Ming-yang, CHEN Wan-zhong, ZHANG Tao Automatic EEG recognition for epilepsy based on DD-DWT and Log-Logistic regression[J]. Chinese Journal of Scientific Instrument, 2017, 38 (6): 1368- 1377
doi: 10.3969/j.issn.0254-3087.2017.06.007
|
26 |
RAJASHEKHAR U, NEELAPPA D, RAJESH L EEG signal classification for brain–computer interface using discrete wavelet transform (DWT)[J]. International Journal of Intelligent Unmanned Systems, 2021, 10 (1): 181- 188
|
27 |
ALSALEH M. Toward an imagined speech-based brain computer interface using EEG signals [D]. Sheffield: University of Sheffield, 2019.
|
28 |
王楚涵. 基于融合特征和集成分类的在线EEG情感识别系统研究[D]. 天津: 天津理工大学, 2021. WANG Chu-han. Research on online EEG emotion recognition system based on Fusion feature and ensemble classification [D]. Tianjin: Tianjin University of Technology, 2021.
|
29 |
ZHOU J, HUANG S, WANG M, et al Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation[J]. Engineering with Computers, 2021, (2): 1- 19
|
30 |
曾靖翔, 张金喜, 曹丹丹, 等 利用kNN方法的沥青路面平整度智能检测[J]. 华南理工大学学报: 自然科学版, 2022, 50 (3): 50- 56 ZENG Jing-xiang, ZHANG Jin-xi, CAO Dan-dan, et al Intelligent detection of asphalt pavement flatness by kNN method[J]. Journal of South China University of Technology: Natural Science Edition, 2022, 50 (3): 50- 56
|
31 |
GARCIA S, VILLASENOR L, REYES A, et al. Tensor decomposition for imagined speech discrimination in EEG [C]// Mexican International Conference on Artificial Intelligence. Cham: Springer, 2018: 239-249.
|
32 |
COONEY C, FOLLI R, COYLE D. Optimizing layers improves CNN generalization and transfer learning for imagined speech decoding from EEG [C]// IEEE International Conference on Systems, Man and Cybernetics. Bari: IEEE, 2019: 1311-1316.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|