Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (10): 2051-2059    DOI: 10.3785/j.issn.1008-973X.2023.10.014
机械工程、能源工程     
电动公交车电池荷电状态的Seq2Seq预测方法
董红召(),王桢,张楠,佘翊妮,林盈盈
浙江工业大学 智能交通系统联合研究所,浙江 杭州 310014
Seq2Seq prediction method of state of charge of electric bus battery
Hong-zhao DONG(),Zhen WANG,Nan ZHANG,Yi-ni SHE,Ying-ying LIN
Joint Institute of Intelligent Transportation System, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1435 KB)   HTML
摘要:

针对高维输入特征和长时预测需求下荷电状态预测困难的问题,提出一种电动公交车电池荷电状态的Seq2Seq预测方法. 在电池状态的基础上引入车辆行驶状态和行驶工况,利用特征选择算法分析各因素对荷电状态的影响. 以LSTM为基本单元结构,WN-Seq2Seq算法融合Seq2Seq与WaveNet循环结构,可以强化高维输入特征与预测荷电状态的序列信息记忆与表征能力,从而提高模型的预测精度. 通过2021—2022年杭州市4辆电动公交车实际行驶数据验证表明,在引入车辆行驶状态和行驶工况后,WN-Seq2Seq模型的评价指标均方误差(MSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和模型计算时间(MCT)分别为0.505%、0.479%、0.656%和0.017 s. 研究结果表明相比传统模型,预测精度及稳定性都有所提升,在不同温度区间下都具有良好的预测效果,为电动公交车能耗控制策略、安全管理提供合理且可靠的参数决策支持.

关键词: 电动公交车荷电状态预测深度学习序列到序列循环神经网络    
Abstract:

A Seq2Seq prediction method for the state of charge of electric bus batteries was proposed to address the difficulty of predicting the state of charge under high-dimensional input features and long-term prediction needs. The battery state prediction was enhanced by incorporating vehicle driving status and operating conditions. The impact of various factors on the state of charge was analyzed using feature selection algorithms. The WN-Seq2Seq algorithm integrated Seq2Seq and WaveNet cyclic structures, which could enhance the memory and representation ability of high-dimensional input features and predicted state of charge sequence information. The accuracy of the model's prediction was improved. Validation using actual driving data from four electric buses in Hangzhou from 2021 to 2022 demonstrated the effectiveness of the WN-Seq2Seq model. The mean squared error (MSE) reached 0.505%, the mean absolute error (MAE) reached 0.479%, the mean absolute percentage error (MAPE) reached 0.656%, and the model computation time (MCT) reached 0.017 s. The prediction accuracy and stability were significantly promoted compared with traditional models. The WN-Seq2Seq model exhibited good prediction performance across different temperature ranges. The findings provide reliable decision-making support for energy consumption control strategies and safety management of electric buses.

Key words: electric bus    state of charge prediction    deep learning    sequence to sequence    recurrent neural networks
收稿日期: 2022-11-06 出版日期: 2023-10-18
CLC:  TM 912  
基金资助: 国家自然科学基金资助项目(61773347);浙江省公益技术研究项目(LGF20F030001)
作者简介: 董红召(1969—),男,教授,从事智能交通和智能机电系统研究. orcid.org/0000-0001-5905-597X. E-mail: its@zjut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
董红召
王桢
张楠
佘翊妮
林盈盈

引用本文:

董红召,王桢,张楠,佘翊妮,林盈盈. 电动公交车电池荷电状态的Seq2Seq预测方法[J]. 浙江大学学报(工学版), 2023, 57(10): 2051-2059.

Hong-zhao DONG,Zhen WANG,Nan ZHANG,Yi-ni SHE,Ying-ying LIN. Seq2Seq prediction method of state of charge of electric bus battery. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2051-2059.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.10.014        https://www.zjujournals.com/eng/CN/Y2023/V57/I10/2051

数据名称 数值
采样时间 2021?03?22 12:29:58
经度/(°) 120.113 67
纬度/(°) 30.296 56
车速/(km·h?1) 11.796 875
电机转速/(r·min?1) 1 435.0
总行驶里程/km 113 709.3
电池组总电流/A 289.6
电池组总电压/V 494.0
电池组平均温度/℃ 21.5
SOC/% 69.8
表 1  电动公交车的实际行驶数据样例
类型 特征名称
电池状态 SOC/%
电池组总电压/V
电池组总电流/A
电池组平均温度/℃
车辆行驶状态 车速/(km·h?1)
电机转速/(r·min?1)
总行驶里程/km
经度/(°)
纬度/(°)
行驶工况 平均加速度/(m·s?1)
平均减速度/(m·s?1)
平均速度/(m·s?1)
行驶里程/km
行驶时间/s
表 2  电动公交车电池的SOC影响因素特征表
图 1  SOC特征的重要程度
特征分类 输入特征
电池状态 SOC/%
电池组总电压/V
电池组总电流/A
电池组平均温度/℃
车辆行驶状态 车速/(km·h?1)
总行驶里程/km
行驶工况 平均加速度/(m·s?1)
平均减速度/(m·s?1)
表 3  SOC预测模型的输入特征
图 2  Seq2Seq的编码器-解码器模型结构
图 3  WN-Seq2Seq的编码器-解码器模型结构
图 4  编码器中LSTM单元的结构图
图 5  解码器中LSTM单元结构图
隐层状态维度 MSE/% MAE/% MAPE/%
32 0.609 0.575 0.765
64 0.505 0.479 0.656
128 0.508 0.484 0.663
表 4  不同隐层状态维度WN-Seq2Seq预测的评价结果
模型名称 MSE/% MAE/% MAPE/% MCT/s
LSTM 1.163 0.709 0.960 0.001
BILSTM 1.090 0.657 0.886 0.002
Seq2Seq 0.698 0.549 0.757 0.012
WN-Seq2Seq 0.505 0.479 0.656 0.017
表 5  各模型预测的结果评价值和计算时间
图 6  不同模型预测SOC曲线与误差的对比
特征类别 MSE/% MAE/% MAPE/% MCT/s 特征类别 MSE/% MAE/% MAPE/% MCT/s
电池状态 0.683 0 0.599 0 0.817 0 0.014 5 电池状态+行驶工况 0.562 0 0.534 0 0.723 0 0.016 0
电池状态+车辆
行驶状态
0.546 0 0.529 0 0.721 0 0.014 9 电池状态+车辆行驶
状态+行驶工况
0.505 0 0.479 0 0.656 0 0.017 0
表 6  不同特征类别WN-Seq2Seq预测的评价结果
图 7  单个充放电周期内WN-Seq2Seq的预测曲线与误差
温度区间/℃ MSE/% MAE/% MAPE/%
0~10 0.489 0.464 0.709
10~20 0.549 0.499 0.659
20~30 0.524 0.496 0.588
30~40 0.469 0.461 0.687
表 7  不同温度区间WN-Seq2Seq预测的评价结果
图 8  不同温度区间WN-Seq2Seq预测SOC曲线的对比
1 MANZOLLI J A, TROVÃO J P, ANTUNES C H A review of electric bus vehicles research topics–methods and trends[J]. Renewable and Sustainable Energy Reviews, 2022, 159: 112211
doi: 10.1016/j.rser.2022.112211
2 朱丽群, 张建秋 一种联合锂电池健康和荷电状态的新模型[J]. 中国电机工程学报, 2018, 38 (12): 3613- 3620
ZHU Li-qun, ZHANG Jian-qiu A new model of jointed states of charge and health for lithium batteries[J]. Proceedings of the CSEE, 2018, 38 (12): 3613- 3620
3 常九健, 张煜帆 基于EMB的纯电动汽车制动能量回收优化控制策略研究[J]. 汽车工程, 2022, 44 (1): 64- 72
CHANG Jiu-jian, ZHANG Yu-fan Research on optimization control strategy for braking energy recovery of a battery electric vehicle based on EMB system[J]. Automotive Engineering, 2022, 44 (1): 64- 72
4 SOLDO J, ŠKUGOR B, DEUR J Online synthesis of an optimal battery state-of-charge reference trajectory for a plug-in hybrid electric city bus[J]. Energies, 2021, 14 (11): 3168
doi: 10.3390/en14113168
5 胡韵华, 冯瑾涛, 邓清闯, 等 电动汽车直流充电桩自动化测试平台的设计与应用[J]. 电力系统保护与控制, 2021, 49 (7): 150- 159
HU Yun-hua, FENG Jin-tao, DENG Qing-chuang, et al Development and application of automated test platform for DC charging piles of electric vehicles[J]. Power System Protection and Control, 2021, 49 (7): 150- 159
6 王义军, 左雪 锂离子电池荷电状态估算方法及其应用场景综述[J]. 电力系统自动化, 2022, 46 (14): 193- 207
WANG Yi-jun, ZUO Xue Review on estimation methods for state of charge of lithiumion battery and their application[J]. Automation of Electric Power Systems, 2022, 46 (14): 193- 207
7 来鑫, 李云飞, 郑岳久, 等 基于SOC-OCV优化曲线与EKF的锂离子电池荷电状态全局估计[J]. 汽车工程, 2021, 43 (1): 19- 26
LAI Xin, LI Yun-fei, ZHENG Yue-jiu, et al An overall estimation of state-of-charge based on SOC-OCV optimization curve and EKF for lithiumion battery[J]. Automotive Engineering, 2021, 43 (1): 19- 26
8 罗勇, 祁朋伟, 黄欢, 等 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42 (5): 681- 687
LUO Yong, QI Peng-wei, HUANG Huan, et al Study on battery SOC estimation by ampere hour intergral method with capacity correction[J]. Automotive Engineering, 2020, 42 (5): 681- 687
9 寇发荣, 王甜甜, 王思俊, 等 基于ABC-RFEKF算法的锂电池SOC估计[J]. 电力系统保护与控制, 2022, 50 (4): 163- 171
KOU Fa-rong, WANG Tian-tian, WANG Si-jun, et al Lithium battery SOC estimation base on an ABC-RFEKF algorithm[J]. Power System Protection and Control, 2022, 50 (4): 163- 171
10 孙国强, 任佳琦, 成乐祥, 等 基于分数阶阻抗模型的磷酸铁锂电池荷电状态估计[J]. 电力系统自动化, 2018, 42 (23): 57- 63
SUN Guo-qiang, REN Jia-qi, CHENG Le-xiang, et al State of charge estimation of LiFePO4 battery based on fractional-order impedance model[J]. Automation of Electric Power Systems, 2018, 42 (23): 57- 63
11 孙金磊, 邹鑫, 顾浩天, 等 基于FFRLS-EKF联合算法的锂离子电池荷电状态估计方法[J]. 汽车工程, 2022, 44 (4): 505- 513
SUN Jin-lei, ZOU Xin, GU Hao-tian, et al State of charge estimation for Lithiumion battery based on FFRLS-EKF joint algorithm[J]. Automotive Engineering, 2022, 44 (4): 505- 513
12 SCHWUNK S, ARMBRUSTER N, STRAUB S, et al Particle filter for state of charge and state of health estimation for lithium-iron phosphate batterie[J]. Journal of Power Sources, 2013, 239: 705- 710
doi: 10.1016/j.jpowsour.2012.10.058
13 WU J, ZHANG C H, CUI N X Fuzzy energy management strategy for a hybrid electric vehicle based on driving cycle recognition[J]. International Journal of Automotive Technology, 2012, 13 (7): 1159- 1167
doi: 10.1007/s12239-012-0119-z
14 宋媛媛. 基于行驶工况的纯电动汽车能耗建模及续驶里程估算研究[D]. 北京: 北京交通大学, 2014: 11-13.
SONG Yuan-yuan. Energy consumption modeling and cruising range estimation based on driving cycle for electric vehicles [D]. Beijing: Beijing Jiaotong University, 2014: 11-13.
15 赵轩, 马建, 刘瑞, 等 基于GGAP-RBF神经网络的多参数纯电动客车蓄电池荷电状态预测[J]. 中国公路学报, 2015, 28 (4): 116- 126
ZHAO Xuan, MA Jian, LIU Rui, et al Multiple parameters state-of-charge estimation of battery for pure electric bus based on GGAP-RBF neural network[J]. China Journal of Highway and Transport, 2015, 28 (4): 116- 126
16 鲍伟, 葛建军 基于稀疏采样数据的电动公交车电池SOC预测方法研究[J]. 汽车工程, 2020, 42 (3): 367- 374
BAO Wei, GE Jian-jun Study on battery SOC prediction method for electric bus based on sparsely sampled data[J]. Automotive Engineering, 2020, 42 (3): 367- 374
17 WANG S, CAO J, CHEN H, et al SeqST-GAN: Seq2Seq generative adversarial nets for multi-step urban crowd flow prediction[J]. ACM Transactions on Spatial Algorithms and Systems, 2020, 6 (4): 1- 24
18 QIN Y, SONG D, CHEN H, et al. A dual-stage attention-base recurrent neural network for time series prediction [C]// Proceedings of 26th International Joint Conference on Artificial Intelligence. Melboume: [s. n. ], 2017: 399-404.
19 HOCHREITER S, SCHMIDHUBER J Long short term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
20 CHEMALI E, KOLLMEYER P J, PREINDL M, et al Long short termmemory networks for accurate state-of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2017, 65 (8): 6730- 6739
21 DONG G, WEI J, CHEN Z Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries[J]. Journal of Power Sources, 2016, 328: 615- 626
doi: 10.1016/j.jpowsour.2016.08.065
22 胡杰, 高志文 基于数据驱动的电动汽车动力电池SOC预测[J]. 汽车工程, 2021, 43 (1): 1- 9
HU Jie, GAO Zhi-wen A data-driven SOC prediction scheme for traction battery in electric vehicles[J]. Automotive Engineering, 2021, 43 (1): 1- 9
[1] 郑超昊,尹志伟,曾钢锋,许月萍,周鹏,刘莉. 基于时空深度学习模型的数值降水预报后处理[J]. 浙江大学学报(工学版), 2023, 57(9): 1756-1765.
[2] 杨哲,葛洪伟,李婷. 特征融合与分发的多专家并行推荐算法框架[J]. 浙江大学学报(工学版), 2023, 57(7): 1317-1325.
[3] 李云红,段姣姣,苏雪平,张蕾涛,于惠康,刘杏瑞. 基于改进生成对抗网络的书法字生成算法[J]. 浙江大学学报(工学版), 2023, 57(7): 1326-1334.
[4] 权巍,蔡永青,王超,宋佳,孙鸿凯,李林轩. 基于3D-ResNet双流网络的VR病评估模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1345-1353.
[5] 周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲. 基于集成学习与深度学习的日供水量预测方法[J]. 浙江大学学报(工学版), 2023, 57(6): 1120-1127.
[6] 刘沛丰,钱璐,赵兴炜,陶波. 航空装配领域中命名实体识别的持续学习框架[J]. 浙江大学学报(工学版), 2023, 57(6): 1186-1194.
[7] 赵嘉墀,王天琪,曾丽芳,邵雪明. 基于GRU的扑翼非定常气动特性快速预测[J]. 浙江大学学报(工学版), 2023, 57(6): 1251-1256.
[8] 曹晓璐,卢富男,朱翔,翁立波,卢书芳,高飞. 基于草图的兼容性服装生成方法[J]. 浙江大学学报(工学版), 2023, 57(5): 939-947.
[9] 熊帆,陈田,卞佰成,刘军. 基于卷积循环神经网络的芯片表面字符识别[J]. 浙江大学学报(工学版), 2023, 57(5): 948-956.
[10] 苏育挺,陆荣烜,张为. 基于注意力和自适应权重的车辆重识别算法[J]. 浙江大学学报(工学版), 2023, 57(4): 712-718.
[11] 马庆禄,鲁佳萍,唐小垚,段学锋. 改进YOLOv5s的公路隧道烟火检测方法[J]. 浙江大学学报(工学版), 2023, 57(4): 784-794.
[12] 曾耀,高法钦. 基于改进YOLOv5的电子元件表面缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(3): 455-465.
[13] 兰欢,余建波. 基于深度学习三维成型的钢板表面缺陷检测[J]. 浙江大学学报(工学版), 2023, 57(3): 466-476.
[14] 曾菊香,王平辉,丁益东,兰林,蔡林熹,管晓宏. 面向节点分类的图神经网络节点嵌入增强模型[J]. 浙江大学学报(工学版), 2023, 57(2): 219-225.
[15] 鲁建厦,包秦,汤洪涛,邵益平,赵文彬. 无设备人体追踪系统的择优标签方法[J]. 浙江大学学报(工学版), 2023, 57(2): 415-425.