|
|
|
| Improved Smith sliding mode control for air-fuel ratio of natural gas engine |
Jiahui JIANG1( ),Yun LONG2,Chong YAO1,*( ),Rongjia LIN1,Enzhe SONG1,Yun KE1 |
1. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China 2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China |
|
|
|
Abstract A sliding mode control strategy based on predefined-time stability and improved Smith predictor was proposed in order to achieve precise air-fuel ratio tracking control for natural gas engines. The delay issue caused by hysteresis characteristics in air–fuel ratio control was effectively addressed. A delayed dynamic model of the air-fuel ratio was established based on the operating principle of natural gas engine. An improved Smith predictor was employed to estimate and compensate for the delay in order to overcome the large time delay in air-fuel ratio control. The improved Smith predictor effectively addressed parameter uncertainties and enhanced system adaptability and dynamic response by incorporating a compensation coefficient. The impact of the delay term on the closed-loop system was effectively eliminated. A predefined-time sliding mode controller was designed based on the compensated output in order to ensure the tracking performance of the control system. The system converged within a predefined time. Lyapunov functions were used to analyze the robustness and convergence performance of the system. An experimental platform was constructed, and various practical testing conditions were designed. Comparative tests with PID controllers and fast-converging sliding mode controllers were conducted. The proposed predefined-time sliding mode controller demonstrated improved stability, reduced overshoot and faster response, meeting the control requirements of natural gas engines.
|
|
Received: 26 March 2025
Published: 04 February 2026
|
|
|
| Fund: 山东省自然科学基金资助项目(ZR2023QE009). |
|
Corresponding Authors:
Chong YAO
E-mail: jjh18846037970@163.com;esmartcontrolheu@163.com
|
天然气发动机空燃比的改进Smith滑模控制
为了实现天然气发动机空燃比的精确跟踪控制,提出基于预定义时间稳定性和改进的Smith预估器的滑模控制策略,有效解决了空燃比控制中由迟滞特性引发的滞后问题. 结合天然气发动机的工作原理,建立空燃比延迟动态模型. 为了克服空燃比控制中的大时延问题,采用改进的Smith预估器对空燃比的延迟进行估计和补偿. 改进的Smith预估器通过引入补偿系数,能够更好地解决参数不确定性,提高系统的适应性和动态响应性能,有效消除延迟项对闭环系统的影响. 基于补偿后的输出,设计预定义时间滑模控制器,确保控制系统的跟踪性能,使系统在预定义的时间内收敛,利用李雅普诺夫函数进行鲁棒稳定性分析和收敛性能分析. 搭建试验平台,设计多种实际测试条件,与PID控制器和快速收敛滑模控制器进行对比,验证了提出的预定义时间滑模控制器具有更好的稳定性、更小的超调及更快的响应速度,满足天然气发动机的控制要求.
关键词:
天然气发动机,
空燃比,
滑模控制,
非线性滑模,
Smith预估器,
预定义时间收敛
|
|
| [1] |
WANG Y, SHI Y, CAI M, et al Optimization of air–fuel ratio control of fuel-powered UAV engine using adaptive fuzzy-PID[J]. Journal of the Franklin Institute, 2018, 355 (17): 8554- 8575
doi: 10.1016/j.jfranklin.2018.09.003
|
|
|
| [2] |
ABDURRAKHMAN A, SOEHARTANTO T, HADI H S, et al Design of output power control system based on mass flow rate comparison of air-fuel ratio (AFR) on dual fuel generator set by using PID control method[J]. International Journal of Technology, 2020, 11 (3): 574
doi: 10.14716/ijtech.v11i3.2710
|
|
|
| [3] |
ALSUWIAN T, TAYYEB M, AMIN A A, et al Design of a hybrid fault-tolerant control system for air–fuel ratio control of internal combustion engines using genetic algorithm and higher-order sliding mode control[J]. Energies, 2022, 15 (15): 5666
|
|
|
| [4] |
BEHROUZ E, REZA T, JAVAD M Second-order sliding mode strategy for air–fuel ratio control of lean-burn SI engines[J]. IEEE Transactions on Control Systems Technology, 2014, 22 (4): 1374- 1384
doi: 10.1109/TCST.2013.2281437
|
|
|
| [5] |
SHAHBAZ M H , AMIN A A. Design of hybrid fault-tolerant control system for air-fuel ratio control of internal combustion engines using artificial neural network and sliding mode control against sensor faults [J]. Advances in Mechanical Engineering, 2023, 15(3): 16878132231160729.
|
|
|
| [6] |
ALSUWIAN T, RIAZ U, AMIN A A, et al Hybrid fault-tolerant control for air-fuel ratio control system of internal combustion engine using fuzzy logic and super-twisting sliding mode control techniques[J]. Energies, 2022, 15 (19): 7010
doi: 10.3390/en15197010
|
|
|
| [7] |
EL KHAZANE J, TISSIR E H Achievement of MPPT by finite time convergence sliding mode control for photovoltaic pumping system[J]. Solar Energy, 2018, 166: 13- 20
doi: 10.1016/j.solener.2018.03.026
|
|
|
| [8] |
LIU L, DONG H, XU X, et al Improved sliding mode disturbance observer-based model-free finite-time terminal sliding mode control for IPMSM speed ripple minimization[J]. Control Engineering Practice, 2025, 155: 106178
|
|
|
| [9] |
杨佳, 杨理, 许强, 等 机械臂新型固定时间非奇异终端滑模控制[J]. 重庆理工大学学报: 自然科学, 2025, (1): 83- 92 YANG Jia, YANG Li, XU Qiang, et al A new fixed time nonsingular terminal sliding mode control for robot arms[J]. Journal of Chongqing University of Technology: Natural Science, 2025, (1): 83- 92
doi: 10.3969/j.issn.1674-8425(z).2025.01.011
|
|
|
| [10] |
刘永慧, 刘泽奇 不匹配扰动下永磁同步电动机的固定时间滑模跟踪控制[J]. 上海第二工业大学学报, 2024, 41 (4): 397- 405 LIU Yonghui, LIU Zeqi Fixed time sliding mode tracking control of permanent magnet synchronous motor under mismatched disturbances[J]. Journal of Shanghai Polytechnic University, 2024, 41 (4): 397- 405
doi: 10.19570/j.cnki.jsspu.2024.04.007
|
|
|
| [11] |
SONG X, FAN Z, LU S, et al Predefined-time sliding mode attitude control for liquid-filled spacecraft with large amplitude sloshing[J]. European Journal of Control, 2024, 77: 100970
doi: 10.1016/j.ejcon.2024.100970
|
|
|
| [12] |
YAN Y, CUI H, HAN P A non-singular predefined-time sliding mode tracking control for space manipulators[J]. Advances in Space Research, 2025, 75 (3): 3284- 3297
|
|
|
| [13] |
刘宜成, 杨迦凌, 唐瑞, 等 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报: 工学版, 2025, 59 (2): 351- 361 LIU Yicheng, YANG Jialing, TANG Rui, et al Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (2): 351- 361
doi: 10.3785/j.issn.1008-973X.2025.02.013
|
|
|
| [14] |
郑力文, 马世英, 王青 基于预定义时间分数阶滑模控制的风火打捆外送系统振荡抑制策略[J]. 电力自动化设备, 2025, 45 (6): 95- 100 ZHENG Liwen, MA Shiying, WANG Qing Oscillation suppression strategy of wind-fire bundling delivery system based on predefined time fractional sliding mode control[J]. Electric Power Automation Equipment, 2025, 45 (6): 95- 100
doi: 10.16081/j.epae.202412015
|
|
|
| [15] |
朱文亮, 刘敏杰, 王志鹏, 等 基于改进型Smith预估法对航向控制的分析[J]. 集成电路应用, 2024, 41 (11): 16- 18 ZHU Wenliang, LIU Minjie, WANG Zhipeng, et al Analysis of control of heading based on improved Smith estimation method[J]. Application of IC, 2024, 41 (11): 16- 18
|
|
|
| [16] |
严彤, 易振国, 张金朋, 等 航空发动机大延迟系统Smith预估补偿模糊PID控制算法[J]. 火力与指挥控制, 2013, 38 (1): 159- 162 YAN Tong, YI Zhenguo, ZHANG Jinpeng, et al A Smith predict fuzzy PID algorithm for aeroengine system with long time-delay[J]. Fire Control and Command Control, 2013, 38 (1): 159- 162
|
|
|
| [17] |
HAI T , KADIR D H , GHANBARI A . Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: comprehensive statistical and operating analyses [J]. Energy, 2023, 276: 127515.
|
|
|
| [18] |
SHARIF S A A, ALINAGHI P H, SAAD M, et al A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems[J]. Archives of Control Sciences, 2020, 30 (3): 599- 620
|
|
|
| [19] |
TAUZIA X, KARAKY H, MAIBOOM A Evaluation of a semi-physical model to predict NOx and soot emissions of a CI automotive engine under warm-up like conditions[J]. Applied Thermal Engineering, 2018, 137: 521- 531
doi: 10.1016/j.applthermaleng.2018.04.005
|
|
|
| [20] |
GANGOPADHYAY A, MECKL P Modeling and validation of a lean burn natural gas engine[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123 (3): 425- 430
doi: 10.1115/1.1386790
|
|
|
| [21] |
HAN Y, YOUNG P Natural gas engine model for speed and air-fuel control[J]. International Journal of Modelling, Identification and Control, 2020, 36 (2): 104
doi: 10.1504/IJMIC.2020.116193
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|