Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2026, Vol. 60 Issue (3): 661-669    DOI: 10.3785/j.issn.1008-973X.2026.03.022
    
Improved Smith sliding mode control for air-fuel ratio of natural gas engine
Jiahui JIANG1(),Yun LONG2,Chong YAO1,*(),Rongjia LIN1,Enzhe SONG1,Yun KE1
1. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Download: HTML     PDF(1708KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A sliding mode control strategy based on predefined-time stability and improved Smith predictor was proposed in order to achieve precise air-fuel ratio tracking control for natural gas engines. The delay issue caused by hysteresis characteristics in air–fuel ratio control was effectively addressed. A delayed dynamic model of the air-fuel ratio was established based on the operating principle of natural gas engine. An improved Smith predictor was employed to estimate and compensate for the delay in order to overcome the large time delay in air-fuel ratio control. The improved Smith predictor effectively addressed parameter uncertainties and enhanced system adaptability and dynamic response by incorporating a compensation coefficient. The impact of the delay term on the closed-loop system was effectively eliminated. A predefined-time sliding mode controller was designed based on the compensated output in order to ensure the tracking performance of the control system. The system converged within a predefined time. Lyapunov functions were used to analyze the robustness and convergence performance of the system. An experimental platform was constructed, and various practical testing conditions were designed. Comparative tests with PID controllers and fast-converging sliding mode controllers were conducted. The proposed predefined-time sliding mode controller demonstrated improved stability, reduced overshoot and faster response, meeting the control requirements of natural gas engines.



Key wordsnatural gas engine      air-fuel ratio      sliding mode control      nonlinear sliding mode      Smith predictor      predefined-time convergence     
Received: 26 March 2025      Published: 04 February 2026
CLC:  TP 13  
Fund:  山东省自然科学基金资助项目(ZR2023QE009).
Corresponding Authors: Chong YAO     E-mail: jjh18846037970@163.com;esmartcontrolheu@163.com
Cite this article:

Jiahui JIANG,Yun LONG,Chong YAO,Rongjia LIN,Enzhe SONG,Yun KE. Improved Smith sliding mode control for air-fuel ratio of natural gas engine. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 661-669.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2026.03.022     OR     https://www.zjujournals.com/eng/Y2026/V60/I3/661


天然气发动机空燃比的改进Smith滑模控制

为了实现天然气发动机空燃比的精确跟踪控制,提出基于预定义时间稳定性和改进的Smith预估器的滑模控制策略,有效解决了空燃比控制中由迟滞特性引发的滞后问题. 结合天然气发动机的工作原理,建立空燃比延迟动态模型. 为了克服空燃比控制中的大时延问题,采用改进的Smith预估器对空燃比的延迟进行估计和补偿. 改进的Smith预估器通过引入补偿系数,能够更好地解决参数不确定性,提高系统的适应性和动态响应性能,有效消除延迟项对闭环系统的影响. 基于补偿后的输出,设计预定义时间滑模控制器,确保控制系统的跟踪性能,使系统在预定义的时间内收敛,利用李雅普诺夫函数进行鲁棒稳定性分析和收敛性能分析. 搭建试验平台,设计多种实际测试条件,与PID控制器和快速收敛滑模控制器进行对比,验证了提出的预定义时间滑模控制器具有更好的稳定性、更小的超调及更快的响应速度,满足天然气发动机的控制要求.


关键词: 天然气发动机,  空燃比,  滑模控制,  非线性滑模,  Smith预估器,  预定义时间收敛 
Fig.1 Structure of natural gas engine
Fig.2 Structure of natural gas engine air-fuel ratio delay dynamic model
Fig.3 Schematic diagram of air-fuel ratio control strategy
Fig.4 Control structure diagram of Smith predictor
Fig.5 Improved Smith predictor control structure
Fig.6 Validation platform of natural gas engine
Fig.7 Flowchart of premixed natural gas engine model
Fig.8 Experimental effect diagram of excess air coefficient under constant speed and constant torque
Fig.9 Experimental effect diagram of excess air coefficient under sudden change in speed and torque
案例控制器$ {e}_{\max } $$ {e}_{\text{rms}} $$ {e}_{\mathrm{ma}} $
案例1PID0.320.0200.016
SFSMC0.210.0120.009
SPSMC0.120.0060.004
案例2PID0.130.0650.040
SFSMC0.090.0450.030
SPSMC0.050.0250.014
Tab.1 Comparison result of performance index in case 1 and case 2
[1]   WANG Y, SHI Y, CAI M, et al Optimization of air–fuel ratio control of fuel-powered UAV engine using adaptive fuzzy-PID[J]. Journal of the Franklin Institute, 2018, 355 (17): 8554- 8575
doi: 10.1016/j.jfranklin.2018.09.003
[2]   ABDURRAKHMAN A, SOEHARTANTO T, HADI H S, et al Design of output power control system based on mass flow rate comparison of air-fuel ratio (AFR) on dual fuel generator set by using PID control method[J]. International Journal of Technology, 2020, 11 (3): 574
doi: 10.14716/ijtech.v11i3.2710
[3]   ALSUWIAN T, TAYYEB M, AMIN A A, et al Design of a hybrid fault-tolerant control system for air–fuel ratio control of internal combustion engines using genetic algorithm and higher-order sliding mode control[J]. Energies, 2022, 15 (15): 5666
[4]   BEHROUZ E, REZA T, JAVAD M Second-order sliding mode strategy for air–fuel ratio control of lean-burn SI engines[J]. IEEE Transactions on Control Systems Technology, 2014, 22 (4): 1374- 1384
doi: 10.1109/TCST.2013.2281437
[5]   SHAHBAZ M H , AMIN A A. Design of hybrid fault-tolerant control system for air-fuel ratio control of internal combustion engines using artificial neural network and sliding mode control against sensor faults [J]. Advances in Mechanical Engineering, 2023, 15(3): 16878132231160729.
[6]   ALSUWIAN T, RIAZ U, AMIN A A, et al Hybrid fault-tolerant control for air-fuel ratio control system of internal combustion engine using fuzzy logic and super-twisting sliding mode control techniques[J]. Energies, 2022, 15 (19): 7010
doi: 10.3390/en15197010
[7]   EL KHAZANE J, TISSIR E H Achievement of MPPT by finite time convergence sliding mode control for photovoltaic pumping system[J]. Solar Energy, 2018, 166: 13- 20
doi: 10.1016/j.solener.2018.03.026
[8]   LIU L, DONG H, XU X, et al Improved sliding mode disturbance observer-based model-free finite-time terminal sliding mode control for IPMSM speed ripple minimization[J]. Control Engineering Practice, 2025, 155: 106178
[9]   杨佳, 杨理, 许强, 等 机械臂新型固定时间非奇异终端滑模控制[J]. 重庆理工大学学报: 自然科学, 2025, (1): 83- 92
YANG Jia, YANG Li, XU Qiang, et al A new fixed time nonsingular terminal sliding mode control for robot arms[J]. Journal of Chongqing University of Technology: Natural Science, 2025, (1): 83- 92
doi: 10.3969/j.issn.1674-8425(z).2025.01.011
[10]   刘永慧, 刘泽奇 不匹配扰动下永磁同步电动机的固定时间滑模跟踪控制[J]. 上海第二工业大学学报, 2024, 41 (4): 397- 405
LIU Yonghui, LIU Zeqi Fixed time sliding mode tracking control of permanent magnet synchronous motor under mismatched disturbances[J]. Journal of Shanghai Polytechnic University, 2024, 41 (4): 397- 405
doi: 10.19570/j.cnki.jsspu.2024.04.007
[11]   SONG X, FAN Z, LU S, et al Predefined-time sliding mode attitude control for liquid-filled spacecraft with large amplitude sloshing[J]. European Journal of Control, 2024, 77: 100970
doi: 10.1016/j.ejcon.2024.100970
[12]   YAN Y, CUI H, HAN P A non-singular predefined-time sliding mode tracking control for space manipulators[J]. Advances in Space Research, 2025, 75 (3): 3284- 3297
[13]   刘宜成, 杨迦凌, 唐瑞, 等 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报: 工学版, 2025, 59 (2): 351- 361
LIU Yicheng, YANG Jialing, TANG Rui, et al Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (2): 351- 361
doi: 10.3785/j.issn.1008-973X.2025.02.013
[14]   郑力文, 马世英, 王青 基于预定义时间分数阶滑模控制的风火打捆外送系统振荡抑制策略[J]. 电力自动化设备, 2025, 45 (6): 95- 100
ZHENG Liwen, MA Shiying, WANG Qing Oscillation suppression strategy of wind-fire bundling delivery system based on predefined time fractional sliding mode control[J]. Electric Power Automation Equipment, 2025, 45 (6): 95- 100
doi: 10.16081/j.epae.202412015
[15]   朱文亮, 刘敏杰, 王志鹏, 等 基于改进型Smith预估法对航向控制的分析[J]. 集成电路应用, 2024, 41 (11): 16- 18
ZHU Wenliang, LIU Minjie, WANG Zhipeng, et al Analysis of control of heading based on improved Smith estimation method[J]. Application of IC, 2024, 41 (11): 16- 18
[16]   严彤, 易振国, 张金朋, 等 航空发动机大延迟系统Smith预估补偿模糊PID控制算法[J]. 火力与指挥控制, 2013, 38 (1): 159- 162
YAN Tong, YI Zhenguo, ZHANG Jinpeng, et al A Smith predict fuzzy PID algorithm for aeroengine system with long time-delay[J]. Fire Control and Command Control, 2013, 38 (1): 159- 162
[17]   HAI T , KADIR D H , GHANBARI A . Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: comprehensive statistical and operating analyses [J]. Energy, 2023, 276: 127515.
[18]   SHARIF S A A, ALINAGHI P H, SAAD M, et al A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems[J]. Archives of Control Sciences, 2020, 30 (3): 599- 620
[19]   TAUZIA X, KARAKY H, MAIBOOM A Evaluation of a semi-physical model to predict NOx and soot emissions of a CI automotive engine under warm-up like conditions[J]. Applied Thermal Engineering, 2018, 137: 521- 531
doi: 10.1016/j.applthermaleng.2018.04.005
[20]   GANGOPADHYAY A, MECKL P Modeling and validation of a lean burn natural gas engine[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123 (3): 425- 430
doi: 10.1115/1.1386790
[21]   HAN Y, YOUNG P Natural gas engine model for speed and air-fuel control[J]. International Journal of Modelling, Identification and Control, 2020, 36 (2): 104
doi: 10.1504/IJMIC.2020.116193
[1] Rongjia LIN,Yun LONG,Chong YAO,Tikang SONG,Yun KE. Model-free adaptive control of combustion process in marine natural gas engine[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1311-1321.
[2] Yicheng LIU,Jialing YANG,Rui TANG,Jing CHENG. Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 351-361.
[3] Jinfeng HUANG,Xiaotian LI. Composite control method for non-minimum phase single inductance dual output Buck-Boost converter[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1266-1274.
[4] Jinfeng HUANG,Jie ZHOU,Hongjie HUANG. Control strategy of power conversion system based on sliding mode active disturbance rejection control[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2171-2181.
[5] Ying ZHAO,Da WANG,Jia-hua NI,Yong-hui LING,Ji XIANG,Ting-ting ZHENG. Energy storage sliding mode controller for controlling acceleration power of synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1050-1060.
[6] Rui YU,Xue-feng XU,Hua ZHOU,Hua-yong YANG. Improved switching-gain adaptation based sliding mode control for trajectory tracking of underactuated unmanned surface vessels[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 436-443.
[7] Guo-peng ZHANG,Zi-han LI,Hao WANG,zheng ZHENG. Isolated AC-DC solid state transformer front and rear stages integrated sliding mode control[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 622-630.
[8] Bing ZHOU,Yang-yi LIU,Xiao-jian WU,Tian CHAI,Yong-qiang ZENG,Qian-xi PAN. Integrated control of active front steering and direct yaw moment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2330-2339.
[9] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[10] Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.
[11] Yi-feng ZHU,Dang-jian WU,Bing-yang BAI,Hao YUE. Sliding mode proportional integral resonance control for single-phase five-level pulse rectifier[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1578-1586.
[12] Zhao-meng CHEN,Xiao-jun ZHOU,Chen-long YANG,Hao-liang LV,Jie-chao WEI. Emergency braking control strategy for high speed electric drive tracked vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 442-449.
[13] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[14] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[15] ZHOU Hua, CHEN Li, DUAN Deng-ping. Sliding mode control of trajectory tracking for underactuated aerostat[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1412-1420.