Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1266-1274    DOI: 10.3785/j.issn.1008-973X.2024.06.016
    
Composite control method for non-minimum phase single inductance dual output Buck-Boost converter
Jinfeng HUANG(),Xiaotian LI
School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Download: HTML     PDF(2067KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An control strategy combining improved non-singular fast terminal sliding mode (NFTSM) and active disturbance rejection control (ADRC) based on the extended state observer (ESO) of energy storage function was proposed, in view of the cross-influence and non-minimum phase characteristics of single inductance dual output Buck-Boost (SIDO Buck-Boost) converters operating in continuous inductance current mode (CCM). Firstly, the main controller was designed, and the ADRC normal form was obtained by fitting the transfer function of the system, which was used to decouple the main path. Secondly, the branch controller was designed, and the improved ESO was used to observe the energy function, and the observed value was compensated into the non-singular fast terminal sliding mode control law to achieve the branch decoupling effect. The approach law was improved in order to suppress the chattering problem of sliding mode control. Then, the stability of the system was proved by the Lyapunov theory. Finally, experiments were carried out based on the hardware-in-the-loop (HIL) experimental platform, and results showed that the proposed control strategy had better effect on overshoot and response time than PI control strategy and ESO-based sliding mode control strategy.



Key wordssingle inductance dual output      Buck-Boost converter      nonsingular fast terminal sliding mode control      self disturbance rejection control      improved sliding mode approach law     
Received: 01 June 2023      Published: 25 May 2024
CLC:  TM 46  
Fund:  陕西省自然科学基金资助项目(2023-JC-YB-442).
Cite this article:

Jinfeng HUANG,Xiaotian LI. Composite control method for non-minimum phase single inductance dual output Buck-Boost converter. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1266-1274.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.016     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1266


非最小相位的单电感双输出 Buck-Boost变换器的复合控制方法

单电感双输出Buck-Boost (SIDO Buck-Boost)变换器在电感电流连续模式(CCM)下工作存在交叉影响以及非最小相位特性的问题. 为了解决上述问题,提出基于储能函数的扩张状态观测器(ESO)的改进非奇异快速终端滑模(NFTSM)和自抗扰控制(ADRC)相结合的控制策略. 设计主路控制器,对系统的传递函数进行拟合得到ADRC范式,利用该范式对主路进行解耦控制.设计支路控制器,采用改进型ESO对储能函数进行观测,并将观测值反馈补偿到非奇异快速终端滑模控制律中,达到支路解耦的效果. 为了抑制滑模控制的抖振问题,对趋近律进行改进. 利用Lyapunov理论证明系统稳定性. 基于硬件在环(HIL)实验平台进行实验验证. 结果表明,所提控制策略与PI控制策略以及基于ESO的滑模控制策略相比,在超调量和响应时间上具有较好的效果.


关键词: 单电感双输出,  Buck-Boost变换器,  非奇异快速终端滑模控制,  自抗扰控制,  改进滑模趋近律 
Fig.1 Circuit topology and operating timing of CCM SIDO Buck-Boost converter
Fig.2 Control block diagram of SIDO Buck-Boost converter
Fig.3 Block diagram of main circuit control
Fig.4 Block diagram of branch control
Fig.5 Experimental comparison of different control strategies for branch a load disturbance
Fig.6 Experimental comparison of different control strategies for branch b load disturbance
Fig.7 Experimental comparison of different control strategies during input voltage disturbance
[1]   MILAD R, MAJID M, AMIR G, et al Lyapunov-based control strategy for a single-input dual-output three-level DC/DC converter[J]. IEEE Transactions on Industrial Electronics, 2022, 70 (10): 10486- 10495
[2]   WANG Y, XU J P, QIN F B, et al A capacitor current and capacitor voltage ripple controlled SIDO CCM buck converter with wide load range and reduced cross regulation[J]. IEEE Transactions on Industrial Electronics, 2021, 69 (1): 270- 281
[3]   MA D S, KI W H, TSUI C Y A pseudo-CCM/DCM SIMO switching converter with freewheel switching[J]. IEEE Journal of Solid-State Circuits, 2003, 38 (6): 1007- 1014
[4]   JIN W J, LEE A, TAN S C, et al Single-inductor multiple-output inverter with precise and independent output voltage regulation[J]. IEEE Transactions on Power Electronics, 2020, 35 (10): 11222- 11234
[5]   ZAHRA S, HERIS P C, MANTOOTH H A Modular expandable multiinput multioutput (MIMO) high step-up transformerless DC-DC converter[J]. IEEE Access, 2022, 10: 53124- 53142
[6]   NAYAK G, NATH S Choosing coefficient of coupling for coupled SIDO converters[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3 (4): 1010- 1019
[7]   NUPUR, NATH S Effect of coupling on discontinuous conduction mode of coupled inductor SIDO Boost Converter[J]. IEEE Transactions on Power Electronics, 2022, 37 (5): 4991- 5002
[8]   李慧慧, 皇金锋 单电感双输出Buck-Boost变换器的非最小相位特性分析及控制策略[J]. 电工技术学报, 2023, 38 (14): 3875- 3887
LI Huihui, HUANG Jinfeng Analysis of non-minimum phase characteristics and control strategies for single-inductor dualoutput buck-boost converters[J]. Transactions of China Electrotechnical Society, 2023, 38 (14): 3875- 3887
[9]   ZHOU S H, ZHOU G H, LIU X S, et al Dynamic freewheeling control for SIDO buck converter with fast transient performance, minimized cross-regulation, and high efficiency[J]. IEEE Transactions on Industrial Electronics, 2022, 70 (2): 1467- 1477
[10]   NAYAK G, NATH S Unified model of peak current mode controlled coupled SIDO converters[J]. IEEE Transactions on Industrial Electronics, 2022, 60 (11): 11156- 11164
[11]   皇金锋, 张世欣, 杨艺 基于扩张状态观测器的单电感双输出Buck变换器滑模解耦控制[J]. 湖南大学学报:自然科学版, 2023, 50 (2): 138- 149
HUANG Jinfeng, ZHANG Shixing, YANG Yi Sliding mode decoupling control of single inductor dual output buck converter based on extended state observer[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (2): 138- 149
[12]   吴忠, 刘朝辉 基于电流模式的DC/DC升压变换器非线性PI控制[J]. 中国电机工程学报, 2011, 31 (33): 31- 36
WU Zhong, LIU Zhaohui Nonlinear PI control of DC/DC boost power converters based on current mode[J]. Proceedings of the CSEE, 2011, 31 (33): 31- 36
[13]   舒莹. 双向DC/DC变换器控制策略研究[D]. 马鞍山: 安徽工业大学, 2021.
SHU Ying. Research on bidirectional DC/DC converter control strategy [D]. Ma'anShan: Anhui University of Technology, 2021.
[14]   JESUS L F, JOSE A J, ARTURO H M, et al Sliding mode control based on linear extended state observer for DC-to-DC buck-boost power converter system with mismatched disturbances[J]. IEEE Transactions on Industry Applications, 2022, 58 (1): 940- 950
[15]   BLANCAA M T, ABDELALI E A, ENRIC V I, et al Sliding-mode control of a boost converter under constant power loading conditions[J]. IET Power Electronics, 2019, 12 (3): 521- 529
[16]   乐江源, 谢运祥, 洪庆祖, 等 Boost变换器精确反馈线性化滑模变结构控制[J]. 中国电机工程学报, 2011, 31 (30): 16- 23
LE Jiangyuan, XIE Yunxiang, HONG Qingzu, et al Sliding mode control of boost converter based on exact feedback linearization[J]. Proceedings of the CSEE, 2011, 31 (30): 16- 23
[17]   SONG L P, HUANG J P, LIANG Qin, et al Trajectory tracking strategy for sliding mode control with double closed-loop for lawn mowing robot based on ESO[J]. IEEE Acceess, 2023, 11: 1867- 1882
[18]   韩京清 自抗扰控制器及其应用[J]. 控制与决策, 1998, (1): 19- 23
HAN Jingqing Auto disturbances rejection controller and its applications[J]. Control and Decision, 1998, (1): 19- 23
doi: 10.3321/j.issn:1001-0920.1998.01.005
[19]   刘翔, 李东海, 姜学智, 等 不稳定对象及非最小相位对象的自抗扰控制仿真研究[J]. 控制与决策, 2001, (4): 420- 424
LIU Xiang, LI Donghai, JIANG Xuezhi, et al Simulation study on auto-disturbance-rejection control for unstable systems and non-minimum phase systems[J]. Control and Decision, 2001, (4): 420- 424
[20]   ZHANG Y L, ZHU M, LI D H, et al ADRC dynamic stabilization of an unstable heat equation[J]. IEEE Transactions on Automatic Control, 2020, 65 (10): 4424- 4429
[21]   GAO Z Q. Scaling and bandwidth-parameterization based controller tuning [C]// Proceedings of the 2003 American Control Conference . Denver: [s. n.], 2003: 4989−4996.
[22]   孙佃升, 章跃进 线性扩张状态观测器的改进及观测精度分析[J]. 国防科技大学学报, 2017, 39 (6): 111- 117
SUN Diansheng, ZHANG Yuejin Improvement and observation accuracy analysis of linear extended state observer[J]. Journal of National University of Defense Technology, 2017, 39 (6): 111- 117
doi: 10.11887/j.cn.201706017
[23]   MARKS G, SHTESSEL Y, GRATT H, et al. Effects of high order sliding mode guidance and observers on hit-tokill interceptions [C] // AIAA Guidance, Navigation, and Control Conference and Exhibit . San Francisco: [s. n.], 2005: 5967.
[24]   杨万禄, 梁立华, 滕桂兰 非线性系统稳定性问题分析[J]. 天津大学学报, 1995, (6): 759- 764
YANG Wanlu, LIANG Lihua, TENG Guilan Stability analysis for nonlinear systems[J]. Journal of Tianjin University, 1995, (6): 759- 764
[1] WANG Yao-yao, GU Lin-yi, GAO Ming, JIA Xian-jun, ZHU Kang-wu. Nonsingular fast terminal sliding mode control for underwater vehicles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1541-1551.