Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Nonsingular fast terminal sliding mode control for underwater vehicles
WANG Yao-yao1, GU Lin-yi1, GAO Ming1, JIA Xian-jun1, ZHU Kang-wu2
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; 2. Shanghai Institute of Spaceflight Control Technology, Shanghai 200233, China
Download:   PDF(1426KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To resolve the problems in the traditional linear hyperplane-based sliding mode control (SMC) method such as low convergence speed and easy to chattering, a novel multivariable nonsingular fast terminal sliding mode control (NFTSMC) method was proposed. Theoretical analysis using Lyapunov stability theory was addressed for the proposed method. The result shows that the position and velocity tracking errors will converge to small ball fields in finite time, and they are smaller than the ones obtained by the traditional linear hyperplane-based SMC method under the same control parameters. For the 4-DOF (degrees of freedom) control of POLARIS remotely operated vehicle (ROV) which is being built up,  comparative simulations were performed using the new proposed method and a traditional exponential reaching law based SMC method respectively. The  results prove that the new proposed method can achieve faster dynamic response speed, higher steady control precision and more smooth control inputs compared with the traditional SMC method in the presence of large unknown external disturbances, big parameter uncertainties and measurement noise.



Published: 01 September 2014
CLC:  TP 249  
Cite this article:

WANG Yao-yao, GU Lin-yi, GAO Ming, JIA Xian-jun, ZHU Kang-wu. Nonsingular fast terminal sliding mode control for underwater vehicles. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1541-1551.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.09.001     OR     http://www.zjujournals.com/eng/Y2014/V48/I9/1541


水下运载器非奇异快速终端滑模控制

针对传统基于线性滑模面的滑模控制方法收敛速度慢、易于颤振的难题,提出一种新型多变量非奇异快速终端滑模控制方法. 利用Lyapunov稳定性理论对该方法进行理论分析,结果表明:系统位置跟踪误差和速度跟踪误差将在有限时间内收敛到小球域内, 并且小于相同参数条件下传统基于线性滑模面的滑模控制方法. 以正在开发的北极星号遥控水下运载器的四自由度控制为研究对象, 将该方法和基于指数趋近律的传统滑模控制方法进行仿真对比, 结果表明:当存在较强未知外干扰和较大参数不确定性以及测量噪声时, 该方法相对传统滑模控制方法可以获得更快的动态响应速度、更高的稳态控制精度和更平滑的控制输入.

1]朱康武, 顾临怡. 作业型遥控水下运载器的多变量 backstepping 鲁棒控制[J]. 控制理论与应用, 2011, 28(10): 1441-1446.
ZHU Kang-wu, GU Lin-yi. Multivariable backstepping robust control for work-class remotely operated vehicle [J]. Control Theory & Applications, 2011, 28(10): 1441-1446.
[2]YOERGER D R, NEWMAN J B, SLOTINE J. Supervisory control system for the JASON ROV [J]. IEEE Journal of Oceanic Engineering, 1986, 11(3): 392-400.
[3]YOERGER D R, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470.
[4] BESSA W M, DUTRA M S, KREUZER E. Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller [J]. Robotics and Autonomous Systems, 2008, 56(8): 670-677.
[5] HOANG N Q, KREUZER E. A robust adaptive sliding mode controller for remotely operated vehicles [J]. Technische Mechanik, 2008, 28(3/4): 185-193.
[6]BAGHERI A, MOGHADDAM J J. Simulation and tracking control based on neural-network strategy and sliding-mode control for underwater remotely operated vehicle [J]. Neurocomputing,2009, 72(7): 1934-1950.
[7]YU Shuang-he, YU Xing-huo, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957-1964.
[8] NEKOUKAR V, ERFANIAN A. Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems [J]. Fuzzy Sets and Systems, 2011, 179(1): 34-49.
[9] FAN Li-ping, YU Ya-zhou. Dynamic adaptive terminal sliding mode control for DC-DC converter [J]. Electronics and Signal Processing, 2011,97(1): 503-507.
[10]YANG Liang, YANG Jian-ying. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems [J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.
[11]ZHU Zheng, XIA Yuan-qing, FU Meng-yin. Attitude stabilization of rigid spacecraft with finite-time convergence [J]. International Journal of Robust and Nonlinear Control, 2011, 21(6): 686-702.
[12] KIM J C, RYU J K, BACK J H,et al. Terminal sliding mode control in reaching and sliding dynamics with input limit [C]∥Proceedings of International Conference on Control, Automation and Systems. Korea:[s. n.], 2010.
[13]FENG Yong, YU Xing-huo, MAN Zhi-hong. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167.
[14]JIN M L, LEE J, CHANG P H, et al. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3593-3601.
[15]CHEN S Y, LIN F J. Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system [J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 636-643.
[16] WANG Jian-ying, SUN Zhao-wei. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying [J]. Acta Astronautica, 2012, 73: 76-87.
[17] LI Hao, DOU Li-hua, SU Zhong. Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator [J]. International Journal of Systems Science, 2013, 44(3): 401-415.
[18] FOSSEN T I. Guidance and control of ocean vehicles [M]. New York: Wiley, 1994.
[19]李升波, 李克强, 王建强, 等. 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38(1): 18.
LI Sheng-bo, LI Ke-qiang, WANG Jian-qiang, et al. Nonsingular and fast terminal sliding mode control method [J]. Information and Control, 2009, 38(1):18.

[1] ZHANG Jian-wei, FAN Zhen, YAN Gang-feng, LIN Zhi-yun. Experimental testbed for cooperative control and coordinated
control of multi-robot systems
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(11): 2124-2129.