Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2171-2181    DOI: 10.3785/j.issn.1008-973X.2024.10.021
    
Control strategy of power conversion system based on sliding mode active disturbance rejection control
Jinfeng HUANG(),Jie ZHOU,Hongjie HUANG
School of Electrical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
Download: HTML     PDF(1993KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the dynamic performance of the power conversion system (PCS), an improved active disturbance rejection control (ADRC) strategy based on reduced-order cascaded extended state observer (ESO) and complementary sliding mode control (CSMC) was designed and applied to the voltage outer loop of the bidirectional DC/AC converter in the PCS. The ESO was modified to a reduced-order cascaded ESO to improve the estimation speed of the state variables and the overall disturbance, enhancing the disturbance estimation capability. The PD control was replaced with CSMC to design a state error feedback law to enhance the robustness of the system, and an improved exponential reaching law was designed to suppress the chattering phenomenon. A simulation model was established and a related experimental platform was built to demonstrate the superiority of the improved ADRC strategy compared to PI control and traditional ADRC. The simulation and experimental results show that the improved ADRC strategy reduces the fluctuation of the DC bus voltage during the transient operation of the PCS, improves the power response speed on the AC side of the PCS, and enhances the output power quality on the AC side.



Key wordspower conversion system (PCS)      active disturbance rejection control (ADRC)      reduced-order cascaded extended state observer      complementary sliding mode control (CSMC)      improved exponential reaching law     
Received: 19 September 2023      Published: 27 September 2024
CLC:  TM 46  
Fund:  陕西省自然科学研究资助项目(2023-JC-YB-442).
Cite this article:

Jinfeng HUANG,Jie ZHOU,Hongjie HUANG. Control strategy of power conversion system based on sliding mode active disturbance rejection control. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2171-2181.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.021     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2171


基于滑模自抗扰的储能变流器控制策略

为了提高储能变流器(PCS)的动态性能,设计基于降阶级联扩张状态观测器(ESO)和互补滑模控制(CSMC)的改进自抗扰控制(ADRC)策略,将改进ADRC策略应用于PCS的双向DC/AC变流器电压外环. 改进ESO为降阶级联ESO以提高状态变量和系统总扰动的估计速度,增加扰动估计能力;更改PD控制为CSMC以设计状态误差反馈律,提升PCS的系统鲁棒性;设计改进指数趋近律以抑制抖振现象. 为了证明改进ADRC策略相较于PI控制和传统ADRC的优越性,建立仿真模型并搭建相关实验平台. 仿真与实验结果表明,改进ADRC策略减小了PCS暂态时直流母线电压波动,提高了PCS交流侧功率响应速度,改善了交流侧的输出电能质量.


关键词: 储能变流器(PCS),  自抗扰控制(ADRC),  降阶级联扩张状态观测器,  互补滑模控制(CSMC),  改进指数趋近律 
Fig.1 Circuit topology of power conversion system
Fig.2 Block diagram of reduced-order cascaded extended state observer control strategy
Fig.3 Disturbance estimation ability of different observers
Fig.4 Estimation errors of slope disturbance
Fig.5 Image comparison of functions for improved exponential reaching law
Fig.6 Block diagram of complementary sliding mode control strategy
Fig.7 Variation of sliding mode surface with time under different exponential reaching laws
Fig.8 Block diagram of power conversion system
参 数数 值参 数数 值
电网电压幅值/V311直流稳压电容C/mF2.2
直流母线电压udc/V700电池额定容量/(A·h)100
滤波电感L/mH1.0电池标称电压vbat/V400
电路等效电阻R0.01电池初始荷电状态SOC/%50
Tab.1 Circuit topology parameter
Fig.9 Comparison of DC bus voltage waveform under parameter perturbation
Fig.10 Total harmonic distortion comparison of AC current at steady state
Fig.11 Hardware in loop test system
策略控制对象参数
PIDC/AC电压外环kp=20、ki=5
DC/AC电流内环kpd=kpq=40、kid=kiq=0.5
DC/DCkpb=0.1、kib=10
传统ADRCDC/AC电压外环ω0=600、ωc=1200
改进ADRCDC/AC电压外环ω0=600、η=300、q=25、ε=20
Tab.2 Control circuit parameter
Fig.12 Experimental comparison of typical working conditions
Fig.13 Experimental waveforms of different control strategies under working condition one
Fig.14 Experimental waveforms of different control strategies under working condition two
Fig.15 Current response of different control strategies under condition one
Fig.16 Current response of different control strategies under condition two
[1]   ANSARI S, ZHANG J, SINGH R E A review of stabilization methods for DCMG with CPL, the role of bandwidth limits and droop control[J]. Protection and Control of Modern Power Systems, 2022, 7 (1): 1- 12
doi: 10.1186/s41601-021-00223-w
[2]   李远征, 任潇, 葛磊蛟, 等 基于可逆固体氧化物电池的电氢耦合微电网全生命周期规划-运营研究[J]. 中国电机工程学报, 2024, 44 (13): 5169- 5184
LI Yuanzheng, REN Xiao, GE Leijiao, et al Research for entire lifecycle planning-operation of electric-hydrogen coupled microgrid based on reversible solid oxide cell[J]. Proceedings of the CSEE, 2024, 44 (13): 5169- 5184
[3]   DRAGICEVIC T, LU X, VASQUEZ J C, et al DC microgrids-part ii: a review of power architectures, applications, and standardization issues[J]. IEEE Transactions on Power Electronics, 2016, 31 (5): 3528- 3549
doi: 10.1109/TPEL.2015.2464277
[4]   王逸超, 李湘旗, 陈仲伟, 等 一种光储独立并网式虚拟同步发电机控制方法[J]. 太阳能学报, 2022, 43 (1): 249- 255
WANG Yichao, LI Xiangqi, CHEN Zhongwei, et al A virtual synchronous generator control method based on independent grid-connected structure of photovoltaic system and energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43 (1): 249- 255
[5]   张宇涵, 杜贵平, 雷雁雄, 等 直流微网混合储能系统控制策略现状及展望[J]. 电力系统保护与控制, 2021, 49 (3): 177- 187
ZHANG Yuhan, DU Guiping, LEI Yanxiong, et al Current status and prospects of control strategy for a DC micro grid hybrid energy storage system[J]. Power System Protection and Control, 2021, 49 (3): 177- 187
[6]   陈晓龙, 周宁, 韩小文, 等 一种具备自适应重合闸能力的混合式直流断路器[J]. 电网技术, 2022, 46 (12): 4718- 4728
CHEN Xiaolong, ZHOU Ning, HAN Xiaowen, et al A hybrid DC circuit breaker with adaptive reclosing ability[J]. Power System Technology, 2022, 46 (12): 4718- 4728
[7]   韩子钰. 光储并网变流器系统的负载匹配控制策略研究[D]. 西安: 西安理工大学, 2022.
HAN Ziyu. Research on load-matching control strategy of photovoltaic-storage grid-connected converter system [D]. Xi’an: Xi’an University of Technology, 2022.
[8]   刘芳, 李研, 何国庆, 等 极弱电网下直驱风电并网变流器小信号建模及稳定性运行策略分析[J]. 电力自动化设备, 2022, 42 (8): 167- 173
LIU Fang, LI Yan, HE Guoqing, et al Small signal modeling and stable operation strategy analysis of direct drive wind power grid-connected converter in extremely weak power grid[J]. Electric Power Automation Equipment, 2022, 42 (8): 167- 173
[9]   韩刚, 蔡旭 不平衡电网下风电并网交流器的滑模电流控制[J]. 上海交通大学学报, 2018, 52 (9): 1065- 1071
HAN Gang, CAI Xu Sliding-mode control of current for wind power grid-connected converter under unbalanced grid voltage[J]. Journal of Shanghai Jiao Tong University, 2018, 52 (9): 1065- 1071
[10]   KIM S, LEE Y. Model predictive control for the power control of three-phase AC/DC converters using a disturbance observer [C]// 2015 15th International Conference on Control, Automation and Systems . Busan: IEEE, 2015: 2070−2075.
[11]   林晓冬, 雷勇 基于T型三电平变流器的超导磁储能系统及其能量成型控制策略[J]. 电网技术, 2018, 42 (2): 607- 613
LIN Xiaodong, LEI Yong Three-level T-type converter for superconducting magnetic energy storage system and its energy-shaping control strategy[J]. Power System Technology, 2018, 42 (2): 607- 613
[12]   王宁. 光储微网在不同运行模式下的储能换流器控制策略研究[D]. 沈阳: 沈阳工业大学, 2021.
WANG ning. Research on control strategy of energy storage converter under different operating modes of optical storage microgrid [D]. Shenyang: Shenyang University of Technology, 2021.
[13]   杨天翔, 程志江, 杨涵棣, 等 基于自抗扰控制的风电并网变流器锁相环设计[J]. 太阳能学报, 2023, 44 (4): 147- 155
YANG Tianxiang, CHENG Zhijiang, YANG Handi, et al Design of phase-locked loop of grid connected converter based on active disturbance rejection control[J]. Acta Energiae Solaris Sinica, 2023, 44 (4): 147- 155
[14]   GUO B, BACHA S, ALAMIR M, et al. An enhanced phase-locked loop with extended state observer [C]// 2019 20th International Symposium on Power Electronics . Novi Sad: IEEE, 2019: 1−6.
[15]   周雪松, 刘乾, 马幼捷, 等 基于改进自抗扰的光伏并网逆变器直流母线电压控制[J]. 太阳能学报, 2022, 43 (10): 65- 72
ZHOU Xuesong, LIU Qian, MA Youjie, et al DC-link voltage control of photovoltaic grid-connected inverter based on improved active disturbance rejection[J]. Acta Energiae Solaris Sinica, 2022, 43 (10): 65- 72
[16]   ZHENG H, DU G, LEI Y, et al Hybrid energy storage bidirectional DC–DC converter based on Hermite interpolation and linear active disturbance rejection control[J]. Journal of Power Electronics, 2023, 23: 959- 971
doi: 10.1007/s43236-023-00602-6
[17]   杨文奇, 卢建华, 姜旭, 等 基于改进ESO的四旋翼姿态自抗扰控制器设计[J]. 系统工程与电子技术, 2022, 44 (12): 3792- 3799
YANG Wenqi, LU Jianhua, JIANG Xu, et al Design of quadrotor attitude active disturbance rejection controller based on improved ESO[J]. Systems Engineering and Electronics, 2022, 44 (12): 3792- 3799
[18]   程启明, 张昕, 赖宇生, 等 电网不平衡工况下三电平直接矩阵变换器反步滑模控制策略[J]. 电力系统保护与控制, 2023, 51 (8): 73- 85
CHENG Qiming, ZHANG Xin, LAI Yusheng, et al Back-stepping sliding-mode control strategy for a three-level direct matrix converter in unbalanced grid conditions[J]. Power System Protection and Control, 2023, 51 (8): 73- 85
[19]   LAKOMY K, MADONSKI R, DAI B, et al Active disturbance rejection control design with suppression of sensor noise effects in application to DC-DC buck power converter[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (1): 816- 824
doi: 10.1109/TIE.2021.3055187
[20]   李中奇, 黄琳静, 周靓, 等 高速列车滑模自抗扰黏着控制方法[J]. 交通运输工程学报, 2023, 23 (2): 251- 263
LI Zhongqi, HUANG Linjing, ZHOU Liang, et al Sliding mode active disturbance rejection adhesion control method of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2023, 23 (2): 251- 263
[21]   李冰林, 曾励, 张鹏铭, 等 主动磁悬浮轴承的滑模自抗扰解耦控制[J]. 电机与控制学报, 2021, 25 (7): 129- 138
LI Binglin, ZENG Li, ZHANG Pengming, et al Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J]. Electric Machines and Control, 2021, 25 (7): 129- 138
[22]   陈闯, 王勃, 于泳, 等 基于改进指数趋近律的感应电机滑模转速观测器研究[J]. 电工技术学报, 2020, 35 (Suppl.1): 155- 163
CHEN Chuang, WANG Bo, YU Yong, et al An improved exponential reaching law based-sliding mode observer for speed-sensorless induction motor drives[J]. Transactions of China Electrotechnical Society, 2020, 35 (Suppl.1): 155- 163
[23]   CHEN X, LI Y, MA H, et al A novel variable exponential discrete time sliding mode reaching law[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68 (7): 2518- 2522
[24]   范云生, 陈欣宇, 赵永生, 等 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制[J]. 自动化学报, 2023, 49 (8): 1758- 1770
FAN Yunsheng, CHEN Xinyu, ZHAO Yongsheng, et al Nonlinear control of quadrotor suspension system based on extended state observer[J]. Acta Automatica Sinica, 2023, 49 (8): 1758- 1770
[25]   王玉鑫, 梅晓榕, 郭育生 一类四阶非线性系统的滑模模糊控制[J]. 电机与控制学报, 2006, 10 (2): 208- 211
WANG Yuxin, MEI Xiaorong, GUO Yusheng Sliding-mode fuzzy control for a class of forth-order nonlinear systems[J]. Electric Machines and Control, 2006, 10 (2): 208- 211
[26]   刘金琨. 滑模变结构控制MATLAB仿真: 基本理论与设计方法[M]. 北京: 清华大学出版社, 2019: 38–42.
[1] Shi-yu ZHANG,Dong-sheng CHEN,Ying-hui SONG. Impedance control technology of assembly robot based on active disturbance rejection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1876-1881.
[2] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[3] TAN Pan-long, SUN Qing-lin, CHEN Zeng-qiang. Application of active disturbance rejection control in trajectory tracking of powered parafoil system[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 992-999.
[4] LIU Gang, JIN Li qiang, WANG Yi. Vehicle stability control system based on active disturbance-rejection control strategy[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2289-2296.