Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (10): 2014-2022    DOI: 10.3785/j.issn.1008-973X.2025.10.002
    
Numerical simulation of thermal management of IGBT power modules in new energy vehicles
Zihan GAO1,3(),Yuzhou CHENG2,Xuehe WANG4,Kun LUO1,2,*(),Jianren FAN1,2
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
3. Provincial Key Laboratory of New Energy Vehicles Thermal Management, Longquan 323700, China
4. Shanghai SemiHua Semiconductor Technology Limited Company, Shanghai 201203, China
Download: HTML     PDF(2558KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To improve the cooling performance of power modules in new energy vehicles, a fluid–thermal–solid coupling numerical method was used to analyze the thermal management of an insulated gate bipolar transistor (IGBT) power module. A three-stage design optimization method, including contribution quantification, surrogate modeling, and overall optimization, was proposed. A numerical model of the IGBT power module was established in ANSYS Fluent, and the resulting relative error between the simulation and the experimental data was 3.7%. The effects of substrate ceramic material, coolant flow rate, and Pin-Fin geometry on thermal performance were analyzed, showing that convective thermal resistance and ceramic layer resistance are the main factors affecting chip thermal resistance. Based on surrogate modeling and multi-objective optimization, the design of a 750 V/820 A H-Boost IGBT power module was optimized. The optimized design reduced chip thermal resistance by 21.1%, pressure drop by 39.3%, and module mass by 6.1%.



Key wordsinsulated gate bipolar transistor (IGBT)      thermal management      thermo-fluid-solid coupling      numerical simulation      design optimization     
Received: 27 December 2024      Published: 27 October 2025
CLC:  TM 46  
Fund:  国家自然科学基金资助项目(52236002).
Corresponding Authors: Kun LUO     E-mail: 22327103@zju.edu.cn;zjulk@zju.edu.cn
Cite this article:

Zihan GAO,Yuzhou CHENG,Xuehe WANG,Kun LUO,Jianren FAN. Numerical simulation of thermal management of IGBT power modules in new energy vehicles. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2014-2022.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.10.002     OR     https://www.zjujournals.com/eng/Y2025/V59/I10/2014


新能源汽车IGBT功率模块热管理的数值模拟

为了提升新能源汽车功率模块的散热能力,采用流热固耦合数值模拟方法分析绝缘栅双极型晶体管(IGBT)功率模块的热管理系统,并提出包含贡献量化、代理建模与整体优化的三阶段设计优化方法. 基于ANSYS Fluent软件建立IGBT功率模块的数值模型,数值模拟值与实验值的相对误差为3.7%. 对影响IGBT功率模块散热性能的主要因素(包括基板陶瓷材料、冷却液流量和针肋结构)进行分析,确定对流换热热阻和陶瓷层热阻是影响芯片热阻的主要因素. 通过代理模型构建与多目标优化对750 V/820 A H-Boost IGBT功率模块进行设计优化,优化后的功率模块芯片热阻降低了21.1%,压降减少了39.3%,模块质量减轻了6.1%.


关键词: 绝缘栅双极晶体管(IGBT),  热管理,  流热固耦合,  数值模拟,  设计优化 
Fig.1 Structure schematic of H-Boost IGBT module
Fig.2 Simplified model of IGBT power module
材料ρm/(kg·m?3)cp/(J·kg?1·℃?1)λ/(W·m?1·℃?1)μm/(mPa·s)
2 320713105.00
锡银7 40023433.00
8 930385398.00
氧化铝陶瓷3 95076527.00
锡银铜7 25022755.00
乙二醇溶液1 0423 4390.411.07
Tab.1 Material parameters of IGBT power module
Fig.3 Mesh independence verification of IGBT power module
Fig.4 Mesh distribution schematic of IGBT power module
Fig.5 Temperature distribution on surface of IGBT power module chips
芯片Rjc/(℃·W?1)ε/%
模拟测试
IGBT0.1090.1143.69
二极管0.1570.1495.24
Tab.2 Thermal resistance test results of IGBT power module chips
Fig.6 Chip thermal resistance for different ceramic substrates
Fig.7 Temperature distribution of ceramic substrates with different materials
Fig.8 Temperature gradient distribution of ceramic substrates with different materials
Fig.9 Variation of coolant pressure drop and chip thermal resistance with volume flow rate of coolant
Fig.10 Coolant temperature distribution on cross-section at different volume flow rates of coolant
Fig.11 Schematic diagram of Pin-Fin geometry
Fig.12 Coolant pressure drop and chip thermal resistance under different circular Pin-Fin diameters
Fig.13 Coolant pressure drop and chip thermal resistance under different lateral spacings
Fig.14 Coolant pressure drop and chip thermal resistance under different elliptical Pin-Fin major axes
结构φ/%
热阻质量
芯片1.200.13
芯片焊料层6.970.33
上铜层2.043.53
陶瓷层27.301.89
下铜层1.204.28
基板焊料层9.842.17
Pin-Fin散热器20.4087.66
冷却液30.20
Tab.3 Analysis of thermal resistance and mass proportion for original IGBT power module
材料Rjc/(℃·W?1)mce/g
Al2O30.10910.647
Si3N40.0877.278
AlN0.0818.787
BeO0.0798.113
Tab.4 Performance parameter comparison for ceramic materials
Fig.15 Comparison of model prediction and numerical simulation results for different target parameters
场景Rjc/(℃·W?1)Δp/kPa
IGBT二极管
优化0.1010.1436.934
模拟0.1070.1547.020
Tab.5 Comparison of Pin-Fin geometry optimization parameters
模块基板材料Pin-Fin
截面形状尺寸/mm横向节距/mm
原始Al2O3圆形2.34.2
优化Si3N4椭圆形短轴:1.2, 长轴:2.43.2
Tab.6 Parameter comparison of IGBT power module before and after optimization
模块Rjc/(℃·W?1)Δp/kPam/g
IGBT二极管
原始 0.109 0.157 11.56561.95
优化0.0860.1227.02527.85
Tab.7 Performance comparison of IGBT power module before and after optimization
[1]   TU C C, HUNG C L, HONG K B, et al Industry perspective on power electronics for electric vehicles[J]. Nature Reviews Electrical Engineering, 2024, 1 (7): 435- 452
doi: 10.1038/s44287-024-00055-4
[2]   KUANG K, GUO X, ZHOU Z, et al Mission profile-based hotspot temperature and lifespan estimation of DC-link capacitors used in automotive traction inverters[J]. IEEE Transactions on Device and Materials Reliability, 2025, 25 (1): 134- 143
doi: 10.1109/TDMR.2024.3523341
[3]   ASIM M, BAIG T, SIDDIQUI F R, et al Advancements in thermal management solutions for electric vehicle high-power electronics: innovations, cooling methods, and future perspectives[J]. Journal of Energy Storage, 2025, 111: 115344
doi: 10.1016/j.est.2025.115344
[4]   YANG S, BRYANT A, MAWBY P, et al An industry-based survey of reliability in power electronic converters[J]. IEEE Transactions on Industry Applications, 2011, 47 (3): 1441- 1451
doi: 10.1109/TIA.2011.2124436
[5]   MA H, GOU M, TIAN X, et al Reliability simulation of IGBT module with different solders based on the finite element method[J]. Metals, 2024, 14 (10): 1141
doi: 10.3390/met14101141
[6]   ELAKKIYA R, KAVITHAA G, SAMAVATIAN V, et al Reliability enhancement of a power semiconductor with optimized solder layer thickness[J]. IEEE Transactions on Power Electronics, 2020, 35 (6): 6397- 6404
doi: 10.1109/TPEL.2019.2951815
[7]   CHEN C, SUETAKE A, HUO F, et al Development of SiC power module structure by micron-sized Ag-paste sinter joining on both die and heatsink to low-thermal-resistance and superior power cycling reliability[J]. IEEE Transactions on Power Electronics, 2024, 39 (9): 10638- 10650
doi: 10.1109/TPEL.2024.3408798
[8]   KIM S H, HEU C S, MOK J Y, et al Enhanced thermal performance of phase change material-integrated fin-type heat sinks for high power electronics cooling[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122257
doi: 10.1016/j.ijheatmasstransfer.2021.122257
[9]   LEE S, SON S H, KIM J, et al Heat conduction and thermal expansion of copper–graphite composite as a heat sink[J]. International Journal of Energy Research, 2022, 46 (8): 10907- 10918
doi: 10.1002/er.7891
[10]   付师, 杨增朝, 李江涛 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38 (10): 1117- 1132
FU Shi, YANG Zengchao, LI Jiangtao Progress of high strength and high thermal conductivity Si3N4 ceramics for power module packaging[J]. Journal of Inorganic Materials, 2023, 38 (10): 1117- 1132
doi: 10.15541/jim20230037
[11]   郑瑞剑, 魏鑫, 张浩, 等 电子封装用高导热AlN陶瓷基板研究进展[J]. 中国陶瓷, 2023, 59 (5): 1- 14
ZHENG Ruijian, WEI Xin, ZHANG Hao, et al Research progress on the high-thermal-conductivity AlN ceramic substrates for electronic packaging[J]. China Ceramics, 2023, 59 (5): 1- 14
[12]   HLINA J, REBOUN J, JANDA M Investigation of cooling capability of ceramic substrates for power electronics applications[J]. Applied Thermal Engineering, 2024, 247: 123110
doi: 10.1016/j.applthermaleng.2024.123110
[13]   KIM D, YAMAMOTO Y, NAGAO S, et al Measurement of heat dissipation and thermal-stability of power modules on DBC substrates with various ceramics by SiC micro-heater chip system and Ag sinter joining[J]. Micromachines, 2019, 10 (11): 745
doi: 10.3390/mi10110745
[14]   REHMAN T U, WOO P Progress in insulated gate bipolar transistor thermal management: from fundamentals to advanced strategies[J]. Renewable and Sustainable Energy Reviews, 2025, 210: 115219
doi: 10.1016/j.rser.2024.115219
[15]   CHEN H, ZHANG T, GAO Q, et al Thermal management enhancement of electronic chips based on novel technologies[J]. Energy, 2025, 316: 134575
doi: 10.1016/j.energy.2025.134575
[16]   ALAM M W, BHATTACHARYYA S, SOUAYEH B, et al CPU heat sink cooling by triangular shape micro-pin-fin: numerical study[J]. International Communications in Heat and Mass Transfer, 2020, 112: 104455
doi: 10.1016/j.icheatmasstransfer.2019.104455
[17]   SHEN Y T, PAN Y H, CHEN H, et al Experimental study of embedded manifold staggered pin-fin microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2024, 226: 125488
doi: 10.1016/j.ijheatmasstransfer.2024.125488
[18]   LEE Y J, KIM S J Experimental investigation on thermal-hydraulic performance of manifold microchannel with pin-fins for ultra-high heat flux cooling[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125336
doi: 10.1016/j.ijheatmasstransfer.2024.125336
[19]   ZOHORA F T, AKTER F, HAQUE M A, et al A novel pin finned structure-embedded microchannel heat sink: CFD-data driven MLP, MLR, and XGBR machine learning models for thermal and fluid flow prediction[J]. Energy, 2024, 307: 132646
doi: 10.1016/j.energy.2024.132646
[20]   ALI N, SRIVASTAVA S, HAQUE I, et al Heat dissipation and fluid flow in micro-channel heat sink equipped with semi-elliptical pin-fin structures: a numerical study[J]. International Communications in Heat and Mass Transfer, 2024, 155: 107492
doi: 10.1016/j.icheatmasstransfer.2024.107492
[21]   KWON J, HAN C, LEE S, et al Thermal and energy performance characteristics of spiral-wing pin-fin heatsinks for liquid cooling of electronic devices in electric vehicles[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107705
doi: 10.1016/j.icheatmasstransfer.2024.107705
[22]   WANG G, WANG Z, LAI L, et al Experimental and numerical investigation of hydrothermal performance of a microchannel heat sink with pin fins[J]. Case Studies in Thermal Engineering, 2024, 60: 104631
doi: 10.1016/j.csite.2024.104631
[23]   MOHIT M K, GUPTA R Influence of fin length and width on flow and heat transfer performance of miniature heat sinks[J]. Case Studies in Thermal Engineering, 2024, 54: 104057
doi: 10.1016/j.csite.2024.104057
[24]   LI C, ZHENG Y, HUANG H, et al Numerical study on hydrothermal performance in a microchannel with gradient array of ribs and pin fins[J]. International Journal of Thermal Sciences, 2025, 210: 109562
doi: 10.1016/j.ijthermalsci.2024.109562
[25]   PANG M, LIU J, LIU W, et al Thermal-and-energy-conservation optimization of the cooling plate for IGBT by field synergy and entropy generation[J]. International Journal of Heat and Fluid Flow, 2024, 108: 109453
doi: 10.1016/j.ijheatfluidflow.2024.109453
[26]   CHEN C, LIU Y, LI J, et al Flow and heat transfer characteristics of manifold microchannels with different microchannel arrangements[J]. Thermal Science and Engineering Progress, 2025, 59: 103354
doi: 10.1016/j.tsep.2025.103354
[27]   YAN Y, WU J, XU F, et al Experimental investigation on flow and heat transfer characteristics of the drop-pressure microchannel heat sink with gradient distribution pin fin arrays and narrow slots[J]. Applied Thermal Engineering, 2023, 233: 121084
doi: 10.1016/j.applthermaleng.2023.121084
[28]   张嘉伟, 曾正, 孙鹏, 等 基于响应面的车用功率模块Pin-Fin优化设计[J]. 电工技术学报, 2022, 37 (22): 5836- 5850
ZHANG Jiawei, ZENG Zheng, SUN Peng, et al Optimized Pin-Fin design of power module for electric vehicle application by response surface[J]. Transactions of China Electrotechnical Society, 2022, 37 (22): 5836- 5850
[29]   CHEN X, XU X, LI M, et al Multi-objective topology optimization design of silicon carbide metal oxide semiconductor field effect transistors power module liquid-cooled heatsink for electric vehicles[J]. Applied Thermal Engineering, 2024, 254: 123861
doi: 10.1016/j.applthermaleng.2024.123861
[30]   NARASIPURAM R P, MOPIDEVI S Assessment of E-mode GaN technology, practical power loss, and efficiency modelling of iL2C resonant DC-DC converter for xEV charging applications[J]. Journal of Energy Storage, 2024, 91: 112008
doi: 10.1016/j.est.2024.112008
[31]   ANSYS INC. Fluent theory guide: 2024R2 [EB/OL]. [2024–12–20]. https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/prod_page.html?pn=Fluent&pid=Fluent&prodver=24.2&lang=en.
[32]   田野, 卜凯阳, 李楚杉, 等 用于IGBT模块温度观测的3-D降阶混合型热模型[J]. 电工技术学报, 2024, 39 (16): 5104- 5120
TIAN Ye, BU Kaiyang, LI Chushan, et al A hybrid 3-D reduced-order thermal model for temperature observation of IGBT modules[J]. Transactions of China Electrotechnical Society, 2024, 39 (16): 5104- 5120
[33]   ZHANG H, LI J, DAI J, et al Improved reliability of planar power interconnect with ceramic-based structure[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6 (1): 175- 187
doi: 10.1109/JESTPE.2017.2758901
[1] Zhuoran WANG,Zhijian SUN,Zitao YU. Flow and heat transfer characteristics of slot-jet microchannel heat sinks[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1539-1546.
[2] Jianfei MA,Gangshuai JIA,Bo JIANG,Zheng CHEN,Xiaokang LING,Shaohui HE. Study on service safety of super-large-span tunnels considering combined defects of lining voids and thinning[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 698-705.
[3] Sijian ZHOU,Di ZHANG,Jian ZHOU,Ying LI,Xiaonan GONG. Deformation control of shield tunnel operation based on tunnel jet system method[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1427-1435.
[4] Mengtian WANG,Tai JIN,Yaolong LIU. Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 857-866.
[5] Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.
[6] Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.
[7] Zhe-jian ZHOU,Yi-xiong FAN,Ran FANG,Xue-cheng BIAN. Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2476-2488.
[8] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[9] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[10] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[11] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[12] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[13] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[14] Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.
[15] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Wen-sheng ZHANG,Liang-wei JIANG. Reliability analysis of post-construction settlement of DMC composite foundation and design optimization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2019-2027.