Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1427-1435    DOI: 10.3785/j.issn.1008-973X.2024.07.012
    
Deformation control of shield tunnel operation based on tunnel jet system method
Sijian ZHOU1,2(),Di ZHANG3,Jian ZHOU1,2,*(),Ying LI4,Xiaonan GONG1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development, Zhejiang University, Hangzhou 310058, China
3. China Railway Siyuan Survey and Design Group Limited Company, Wuhan 430063, China
4. Zhejiang Province Institute of Architectural Design and Research, Hangzhou 310006, China
Download: HTML     PDF(1953KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A study was carried out on the deformation control of operational tunnels using the tunnel jet system (TJS) method. Based on measured data from a typical operating tunnel section, a finite element numerical simulation software Plaxis 3D was used to analyze the influence of pile length, pile angle and pile diameter on the tunnel reinforcement effect in the cross-section arrangement of the TJS method. A method for optimizing the TJS method was proposed by placing a partial cushion layer at the bottom of the tunnel. Results showed that a longer pile length, an angle closer to 40 degrees, and a larger pile diameter led to a more pronounced ability to control tunnel settlement. The ground settlement of the tunnel reinforced by the TJS method was reduced by 16.38 mm, and the horizontal convergence deformation was 42.87% of that of the unreinforced tunnel. A partial cushion layer greatly enhanced the reinforcement effect of TJS piles, the layout of “short on both sides and long in the middle” reduced construction costs while taking into account the reinforcement effect.



Key wordstunnel jet system method      in-tunnel reinforcement      shield tunnel      deformation control of operation period      numerical simulation     
Received: 16 June 2023      Published: 01 July 2024
CLC:  TU 74  
Fund:  国家自然科学基金资助项目(51778575);铁四院横向课题资助项目(2022K119-W01).
Corresponding Authors: Jian ZHOU     E-mail: 22112172@zju.edu.cn;zjelim@zju.edu.cn
Cite this article:

Sijian ZHOU,Di ZHANG,Jian ZHOU,Ying LI,Xiaonan GONG. Deformation control of shield tunnel operation based on tunnel jet system method. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1427-1435.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1427


基于TJS工法的盾构隧道运营变形控制

开展隧道洞内全方位微扰动高压喷射注浆(TJS)工法对运营隧道变形控制的研究. 基于典型区间运营隧道实测数据,采用Plaxis 3D有限元数值模拟软件分析TJS工法横断面布置中桩长、打设角度、桩径对隧道加固效果的影响,通过在隧道底部打设局部垫层的方法优化TJS工法. 结果表明,桩长越长、角度越接近40°、桩径越大,对隧道沉降的控制效果越明显. TJS工法加固后的隧道地表沉降减少16.38 mm,水平收敛变形为未加固时的42.87%. 局部垫层能够显著提升TJS桩的加固效果,“两侧短中间长”的布置能够兼顾加固效果和降低施工成本.


关键词: TJS工法,  洞内加固,  盾构隧道,  运营变形控制,  数值模拟 
Fig.1 Tunnel jet system method
结构模型d/mγ/(kN·m?3E/GPa
管片(C50)线弹性0.3524.024×103(0.7×34.5×103)
道床(C30)线弹性0.6518.020×103
TJS线弹性22.07×103
Tab.1 Model structure parameters for simulation
土层编号土层名称γ/(kN·m?3eE/kPavc/kPaφ/(°)k/(m·s?1
粉质黏土18.70.9723950.3213.014.83.27×10?9
淤泥质粉质黏土18.01.1320320.347.018.72.66×10?9
淤泥质黏土17.01.4412930.3610.09.81.82×10?9
1粉质黏土18.31.0127100.3310.015.93.00×10?9
2夹薄砂层粉质黏土18.30.9833180.2910.019.12.47×10?7
粉质黏土19.90.7042160.3012.830.03.00×10?9
粉砂夹黏土20.10.6465600.3026.36.02.00×10?7
Tab.2 Soil parameters for simulation
Fig.2 Soil profile for typical working conditions
Fig.3 Mesh division diagram for typical working condition
Fig.4 Simulated data verification for typical working conditions
工况l/mθ/(°)r/mm
1440800
2840800
31240800
41640800
52040800
61220800
71260800
81280800
91240400
101240600
1112401000
1212401200
Tab.3 Grouping of pile layout
Fig.5 Influence of pile length on reinforcement effect
Fig.6 Influence of pile angle on reinforcement effect
Fig.7 Influence of pile diameter on reinforcement effect
Fig.8 Reinforcement effect on ground settlement
Fig.9 Cloud diagram of lining horizontal deformation
Fig.10 Optimized tunnel jet system method with partial cushion layer
Fig.11 Reinforcement effect of optimized tunnel jet system method
Fig.12 Lining stress cloud diagram of optimized tunnel jet system method
组合形式组别$ l_{\mathrm{c}} $/m$ l_{\mathrm{i}} $/mL/m
长短桩18620
28416
38212
46822
等长桩58824
67721
76618
Tab.4 Grouping of long and short tunnel jet system piles combination
Fig.13 Settlement comparison between combinations of optimized tunnel jet system method
[1]   SHIRLAW J N Observed and calculated pore pressures and deformations induced by an earth balance shield: discussion[J]. Canadian Geotechnical Journal, 1995, 32: 181- 189
doi: 10.1139/t95-017
[2]   O’REILLY M P, MAIR R J, ALDERMAN G H. Long-term settlements over tunnels: an eleven-year study at Grimsby [C]// Proceedings of Tunnelling 1991: 6th International Symposium . London: Elsevier, 1991: 55−64.
[3]   张校甫, 周冠南, 苏华友 复杂地质浅埋隧道袖阀管地表注浆加固技术[J]. 施工技术, 2017, 46 (Suppl.2): 1049- 1052
ZHANG Xiaofu, ZHOU Guannan, SU Huayou Surface grouting reinforcement technique of soletanche in complicated geological shallow tunnel[J]. Construction Technology, 2017, 46 (Suppl.2): 1049- 1052
[4]   吕昌怀, 刘燕, 张亮亮, 等 明挖隧道与盾构隧道下穿铁路桥变形影响及隔离桩效果[J]. 铁道建筑, 2022, 62 (11): 118- 121
LYU Changhuai, LIU Yan, ZHANG Liangliang, et al Deformation influence and isolation pile effect of existing railway bridge crossed by open-cut tunnel and shield tunnel[J]. Railway Engineering, 2022, 62 (11): 118- 121
doi: 10.3969/j.issn.1003-1995.2022.11.25
[5]   陈仁朋, 张品, 刘湛, 等 MJS水平桩加固在盾构下穿既有隧道中应用研究[J]. 湖南大学学报: 自然科学版, 2018, 45 (7): 103- 110
CHEN Renpeng, ZHANG Pin, LIU Zhan, et al Application study of MJS horizontal column reinforcement in shield tunneling[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (7): 103- 110
[6]   VOLKMANN G, SCHUBERT W. Geotechnical model for pipe roof supports in tunneling [C]// Underground Space: the 4th Dimension of Metropolises . [S.l.]: Taylor and Francis Group, 2007: 755−760.
[7]   岳洪武, 苗苗 浅埋暗挖软岩隧道管棚预注浆加固效果分析[J]. 现代隧道技术, 2021, 58 (2): 111- 117
YUE Hongwu, MIAO Miao Analysis on pre-grouting reinforcement effect of pipe roofs for the shallow-buried mined tunnel in soft rocks[J]. Modern Tunnelling Technology, 2021, 58 (2): 111- 117
[8]   单生彪. 合肥地铁盾构隧道近接高架桥施工影响与控制研究[D]. 合肥: 合肥工业大学, 2017.
SHAN Shengbiao. Study on the influence of Hefei metro tunneling adjacent to viaduct and its construction controls [D]. Hefei: Hefei University of Technology, 2017.
[9]   孙雅珍, 于阳, 王金昌, 等. 考虑界面效应的内张钢圈加固盾构管片结构力学性能研究[J]. 岩土工程学报, 2022, 44(2): 343−351.
SUN Yazhen, YU Yang, WANG Jinchang, et al. Mechanical properties of linings of shield tunnel strengthened by steel plates considering interface effects [J]. Chinese Journal of Geotechnical Engineering , 2022, 44(2): 343−351.
[10]   柳献, 张乐乐, 李刚, 等 复合腔体加固盾构隧道结构承载能力的试验研究[J]. 城市轨道交通研究, 2015, (7): 52- 57
LIU Xian, ZHANG Lele, LI Gang, et al Experimental study on the ultimate bearing capacity of shield tunnel composite cavity reinforcement[J]. Urban Mass Transit, 2015, (7): 52- 57
[11]   柳献, 张晨光, 张衍, 等 复合腔体加固盾构隧道纵缝接头试验研究[J]. 铁道科学与工程学报, 2015, 12 (2): 376- 383
LIU Xian, ZHANG Chenguang, ZHANG Yan, et al Experimental study on the longitudinal joint of shield tunnels reinforced with composite cavity[J]. Journal of Railway Science and Engineering, 2015, 12 (2): 376- 383
doi: 10.3969/j.issn.1672-7029.2015.02.024
[12]   刘梓圣, 张冬梅 软土盾构隧道芳纶布加固机理和效果研究[J]. 现代隧道技术, 2014, 51 (5): 155- 160
LIU Zisheng, ZHANG Dongmei The mechanism and effects of AFRP reinforcement for a shield tunnel in soft soil[J]. Modern Tunnelling Technology, 2014, 51 (5): 155- 160
[13]   刘学增, 周若阳, 游贵良, 等 VI级围岩公路隧道衬砌粘贴钢板和粘贴碳纤维布加固方法对比试验研究[J]. 科学技术与工程, 2017, 17 (34): 130- 135
LIU Xuezeng, ZHOU Ruoyang, YOU Guiliang, et al Comparative experimental study on reinforcement of highway tunnel lining by bonding steel plate and bonding carbon-fiber-reinforced plastics under VI grade surrounding rock[J]. Science Technology and Engineering, 2017, 17 (34): 130- 135
doi: 10.3969/j.issn.1671-1815.2017.34.021
[14]   柳献, 张晨光, 张宸, 等 FRP加固盾构隧道纵缝接头试验研究[J]. 铁道科学与工程学报, 2016, 13 (2): 316- 324
LIU Xian, ZHANG Chenguang, ZHANG Chen, et al Experimental study on the longitudinal joint in shield tunnel reinforced with FRP material[J]. Journal of Railway Science and Engineering, 2016, 13 (2): 316- 324
doi: 10.3969/j.issn.1672-7029.2016.02.018
[15]   王文龙. 盾构隧道近距离上穿施工对既有隧道扰动分析及加固技术研究[D]. 徐州: 中国矿业大学, 2022.
WANG Wenlong. Study on disturbance analysis and reinforcement technology of existing tunnel by shield tunnel close overpass construction [D]. Xuzhou: China University of Mining and Technology, 2022.
[16]   赵帅, 张东明, 邵华, 等 盾构隧道微扰动注浆对土体强度和衬砌横向收敛的影响[J]. 同济大学学报: 自然科学版, 2022, 50 (8): 1145- 1153
ZHAO Shuai, ZHANG Dongming, SHAO Hua, et al Influence of perturbation grouting of shield tunnel on soil strength and transverse convergence of tunnel linings[J]. Journal of Tongji University: Natural Science, 2022, 50 (8): 1145- 1153
[17]   张冬梅, 邹伟彪, 闫静雅 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36 (12): 2203- 2212
ZHANG Dongmei, ZOU Weibiao, YAN Jingya Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (12): 2203- 2212
doi: 10.11779/CJGE201412007
[18]   鞠丽艳, 倪佳 关于盾构法隧道注浆防水及加固技术的应用分析[J]. 中国建筑防水, 2015, (24): 21- 24
JU Liyan, NI Jia Application analysis on waterproofing and reinforcement technology for shield tunnel grouting[J]. China Building Waterproofing, 2015, (24): 21- 24
doi: 10.3969/j.issn.1007-497X.2015.24.007
[19]   卓越, 李治国, 高广义 隧道注浆技术的发展现状与展望[J]. 隧道建设(中英文), 2021, 41 (11): 1953- 1963
ZHUO Yue, LI Zhiguo, GAO Guangyi Development status and prospect of tunnel grouting technology[J]. Tunnel Construction, 2021, 41 (11): 1953- 1963
[20]   刘兴旺, 李瑛, 龚晓南, 等 新型地基加固IMS工法施工对土体扰动的试验研究[J]. 地基处理, 2019, 1 (2): 54- 58
LIU Xingwang, LI Ying, GONG Xiaonan, et al Experimental study on soil disturbance during construction by innovative mixing system[J]. Chinese Journal of Ground Improvement, 2019, 1 (2): 54- 58
[21]   LEE K M, JI H W, SHEN C K, et al Ground response to the construction of Shanghai Metro Tunnel-Line 2[J]. Soils and Foundations, 1999, 39 (3): 113- 134
doi: 10.3208/sandf.39.3_113
[22]   SHEN S, WU H, CUI Y, et al Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, 40: 309- 323
doi: 10.1016/j.tust.2013.10.013
[23]   黄宏伟, 李庆桐 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36 (12): 2861- 2871
HUANG Hongwei, LI Qingtong Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (12): 2861- 2871
[24]   陶冶. 车辆荷载作用下路基沉降计算方法研究[D]. 杭州: 浙江大学, 2012.
TAO Ye. Study on subgrade settlement calculation method under vehicle loads [D]. Hangzhou: Zhejiang University, 2012.
[25]   FUJIKAWA K, MIURA N, BEPPU I Field investigation on the settlement of low embankment due to traffic load and its prediction[J]. Soils and Foundations, 1996, 36 (4): 147- 153
doi: 10.3208/sandf.36.4_147
[26]   徐长节, 孙凤明, 林刚 杭州庆春路过江隧道运营期沉降研究[J]. 中南大学学报: 自然科学版, 2014, 45 (9): 3219- 3226
XU Changjie, SUN Fengming, LIN Gang Longitudinal settlement analysis of Hangzhou Qingchun cross-river tunnel during operational periods[J]. Journal of Central South University: Science and Technology, 2014, 45 (9): 3219- 3226
[27]   中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2013.
[28]   郭金玲. 粉喷桩加固软土地基对周围结构及地基的影响分析[D]. 西安: 西安理工大学, 2018.
GUO Jinling. Analysis on the effect of DJM piles on the surrounding structure and foundation of soft soil foundation [D]. Xi’an: Xi’an University of Technology, 2018.
[1] Mengtian WANG,Tai JIN,Yaolong LIU. Numerical analysis of tiltrotor/wing aerodynamic characteristics in continuous conversion mode[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 857-866.
[2] Chao WANG,Chunzhou ZHU,Jinfeng ZOU,Bo LIU,Hanqiu ZHANG,Jiangfeng MA. Calculation approach for deformation of adjacent pile foundation caused by diagonal intersection with side penetration construction of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 557-569.
[3] Jun-cheng LIU,Yong TAN,Xiang-hua SONG,Dong-dong FAN,Tian-ren LIU. Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 530-541.
[4] Han-yuan LI,Xing-gao LI,Yang LIU,Yi YANG,Ming-zhe MA. Longitudinal stress and deformation characteristics of shield tunnel crossing active fault[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 340-352.
[5] Yi-cun WANG,Chang-xiao SHAO,Tai JIN,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Representation of combustion thermochemical manifolds via multi-gate mixture of experts[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2401-2411.
[6] Zhe-jian ZHOU,Yi-xiong FAN,Ran FANG,Xue-cheng BIAN. Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2476-2488.
[7] Ting-wei JI,Xu ZHA,Fang-fang XIE,Yu-si WU,Xin-shuai ZHANG,Yi-yang JIANG,Chang-ping DU,Yao ZHENG. Multi-fidelity aerodynamic modeling method of aerospace vehicles based on Gaussian process regression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2314-2324.
[8] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[9] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[10] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[11] Han-yuan LI,Xing-gao LI,Ming-zhe MA,Hao LIU,Yi YANG. Model experimental study on influence of buried fault dislocation on shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 631-639.
[12] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[13] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[14] Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.
[15] Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.