|
|
Solving combustion chemical differential equations via physics-informed neural network |
Yi-cun WANG1(),Jiang-kuan XING1,2,Kun LUO1,*(),Hai-ou WANG1,Jian-ren FAN1 |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 2. Department of Mechanical Engineering and Science, Kyoto University, Kyoto 6158540, Japan |
|
|
Abstract Two typical cases including the stiff system of ordinary differential equations ROBER problem and the steady-state mixture fraction equation in jet flame were selected in order to efficiently embed the complex physicochemical information of turbulent combustion into physics-informed neural networks (PINNs). The potential of PINNs in solving combustion chemical differential equations was explored. Results show that the PINNs model can correctly capture the evolution of the zero-dimensional stiff reaction system. PINNs solution accorded well with the conventional numerical solution for steady jet flame. The selection of residual points was particularly important for solving complex differential equations in the field of combustion and chemistry, which should be considered based on the specific configuration in detail.
|
Received: 17 March 2022
Published: 25 October 2022
|
|
Fund: 国家杰出青年科学基金资助项目(51925603) |
Corresponding Authors:
Kun LUO
E-mail: wangyicun@zju.edu.cn;zjulk@zju.edu.cn
|
基于物理信息神经网络的燃烧化学微分方程求解
为了有效地将湍流燃烧复杂的物理化学信息嵌入到物理信息神经网络(PINNs),选取湍流燃烧模拟中的2个典型场景案例,即刚性常微分方程ROBER问题及稳态射流火焰混合分数方程求解,探索PINNs在燃烧化学微分方程计算中的应用潜力. 结果表明,对于零维刚性反应系统,利用PINNs模型可以较好地捕捉到系统的演化过程;对于稳态射流火焰,PINNs的预测解与传统的数值解有较好的一致性. 残差点的选取对于燃烧化学领域内的复杂微分方程求解尤为重要,应基于具体的构型详细考虑.
关键词:
物理信息神经网络,
人工神经网络,
燃烧数值模拟,
微分方程,
残差点
|
|
[1] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686- 707
doi: 10.1016/j.jcp.2018.10.045
|
|
|
[2] |
BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18: 1- 43
|
|
|
[3] |
RAISSI M, YAZDANI A, KARNIADAKIS G E Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations[J]. Science, 2020, 367 (6481): 1026- 1030
doi: 10.1126/science.aaw4741
|
|
|
[4] |
JIN X W, CAI S Z, LI H, et al NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951
doi: 10.1016/j.jcp.2020.109951
|
|
|
[5] |
MAO Z P, JAGTAP A D, KARNIADAKIS G E Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789
doi: 10.1016/j.cma.2019.112789
|
|
|
[6] |
KUMAR A, RIDHA S, NARAHARI M, et al Physics-guided deep neural network to characterize non-Newtonian fluid flow for optimal use of energy resources[J]. Expert Systems with Applications, 2021, 183: 115409
doi: 10.1016/j.eswa.2021.115409
|
|
|
[7] |
赵暾, 周宇, 程艳青, 等 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解[J]. 空气动力学学报, 2021, 39 (5): 19- 26 ZHAO Tun, ZHOU Yu, CHENG Yan-qing, et al Solving forward and inverse problems of partial differential equations of heat conduction using physics-informed neural networks[J]. Acta Aerodynamica Sinica, 2021, 39 (5): 19- 26
doi: 10.7638/kqdlxxb-2020.0176
|
|
|
[8] |
ZOBEIRY N, HUMFELD K D A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104232
doi: 10.1016/j.engappai.2021.104232
|
|
|
[9] |
陆至彬, 瞿景辉, 刘桦, 等 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72 (3): 1496- 1503 LU Zhi-bin, QU Jing-hui, LIU Hua, et al Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. Journal of Chemical Industry and Engineering (China), 2021, 72 (3): 1496- 1503
doi: 10.11949/0438-1157.20201879
|
|
|
[10] |
PENG G, ALBER M, TEPOLE A B, et al Multiscale modeling meets machine learning: what can we learn?[J]. Archives of Computational Methods in Engineering, 2021, 28 (3): 1017- 1037
doi: 10.1007/s11831-020-09405-5
|
|
|
[11] |
HUANG Y, ZHANG Z, ZHANG X A direct-forcing immersed boundary method for incompressible flows based on physics-informed neural network[J]. Fluids, 2022, 7 (2): 56
doi: 10.3390/fluids7020056
|
|
|
[12] |
FUKS O, TCHELEPI H A Limitations of physics informed machine learning for nonlinear two-phase transport in porous media[J]. Journal of Machine Learning for Modeling and Computing, 2020, 1 (1): 19- 37
doi: 10.1615/JMachLearnModelComput.2020033905
|
|
|
[13] |
JI W, QIU W, SHI Z, et al Stiff-pinn: physics-informed neural network for stiff chemical kinetics[J]. The Journal of Physical Chemistry A, 2021, 125 (36): 8098- 8106
doi: 10.1021/acs.jpca.1c05102
|
|
|
[14] |
KNIO O M, NAJM H N, WYCKOFF P S A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation[J]. Journal of Computational Physics, 1999, 154 (2): 428- 467
doi: 10.1006/jcph.1999.6322
|
|
|
[15] |
LANSER D, VERWER J G Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling[J]. Journal of Computational and Applied Mathematics, 1999, 111 (1/2): 201- 216
doi: 10.1016/S0377-0427(99)00143-0
|
|
|
[16] |
ORAN E S, BORIS J P, BORIS J P. Numerical simulation of reactive flow [M]. Cambridge: Cambridge University Press, 2001.
|
|
|
[17] |
SPORTISSE B An analysis of operator splitting techniques in the stiff case[J]. Journal of Computational Physics, 2000, 161 (1): 140- 168
doi: 10.1006/jcph.2000.6495
|
|
|
[18] |
GICQUEL L, STAFFELBACH G, POINSOT T Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38 (6): 782- 817
doi: 10.1016/j.pecs.2012.04.004
|
|
|
[19] |
夏一帆. 面向航空发动机燃烧室点火问题的数值计算方法研究[D]. 杭州: 浙江大学, 2019. XIA Yi-fan. A study of numerical methods for the ignition process in aeroengine combustors [D]. Hangzhou: Zhejiang University, 2019.
|
|
|
[20] |
ECHEKKI T, MASTORAKOS E. Turbulent combustion modeling: Advances, new trends and perspectives [M]. Berlin: Springer, 2010.
|
|
|
[21] |
LU L, MENG X H, MAO Z P, et al DeepXDE: A deep learning library for solving differential equations[J]. SIAM Review, 2021, 63 (1): 208- 228
doi: 10.1137/19M1274067
|
|
|
[22] |
NABIAN M A, GLADSTONE R J, MEIDANI H Efficient training of physics-informed neural networks via importance sampling[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36 (8): 962- 977
doi: 10.1111/mice.12685
|
|
|
[23] |
武育宏. 基于物理机制的深度神经网络在数值求解非线性Degasperis-Procesi方程中的应用[D]. 上海: 上海师范大学, 2020. WU Yu-hong. Application of physics-informed neural network in numerical solving of nonlinear Degasperis-Procesi equation [D]. Shanghai: Shanghai Normal University, 2020.
|
|
|
[24] |
WANNER G, HAIRER E. Solving ordinary differential equations II [M]. Berlin: Springer, 1996.
|
|
|
[25] |
ABADI M, BARHAM P, CHEN J, et al. TensorFlow: a system for large-scale machine learning [C]// 12th USENIX Symposium on Operating Systems Design and Implementation. Savannah: USENIX Association, 2016: 265-283.
|
|
|
[26] |
WELLER H G, TABOR G, JASAK H, et al A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12 (6): 620- 631
doi: 10.1063/1.168744
|
|
|
[27] |
IMREN A, HAWORTH D C On the merits of extrapolation-based stiff ODE solvers for combustion CFD[J]. Combustion and Flame, 2016, 174: 1- 15
doi: 10.1016/j.combustflame.2016.09.018
|
|
|
[28] |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s. n.], 2010: 249-256.
|
|
|
[29] |
KINGMA D P, BA J. Adam: A method for stochastic optimization [EB/OL]. [2022-03-01]. https://arxiv.org/abs/1412.6980.
|
|
|
[30] |
LAGARIS I E, LIKAS A, FOTIADIS D I Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9 (5): 987- 1000
doi: 10.1109/72.712178
|
|
|
[31] |
VAN OIJEN J A, LAMMERS F A, DE GOEY L Modeling of complex premixed burner systems by using flamelet-generated manifolds[J]. Combustion and Flame, 2001, 127 (3): 2124- 2134
doi: 10.1016/S0010-2180(01)00316-9
|
|
|
[32] |
PIERCE C D, MOIN P Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73- 97
doi: 10.1017/S0022112004008213
|
|
|
[33] |
BILGER R W, STARNER S H, KEE R J On reduced mechanisms for methane air combustion in nonpremixed flames[J]. Combustion and Flame, 1990, 80 (2): 135- 149
doi: 10.1016/0010-2180(90)90122-8
|
|
|
[34] |
NAKAMURA M, AKAMATSU F, KUROSE R, et al Combustion mechanism of liquid fuel spray in a gaseous flame[J]. Physics of Fluids, 2005, 17 (12): 123301
doi: 10.1063/1.2140294
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|