[1] 刘建伟,刘媛,罗雄麟.玻尔兹曼机研究进展[J].计算机研究与发展,2014, 51(1): 1-16.
LIU Jian-wei, LIU Yuan, LUO Xiong-lin. Research and development on boltzmann machine [J]. Journal of Computer Research and Development, 2014, 51(1): 1-16.
[2] 陈宇,郑德权,赵铁军.基于Deep Belief Nets的中文名实体关系抽取 [J].软件学报, 2012, 23(10): 2572-2585.
CHEN Yu, ZHENG De-quan, ZHAO Tie-jun. Chinese relation extraction based on deep belief nets [J]. Journal of Software, 2012, 23(10): 2572-2585.
[3] MOHAMED A, DAHL G E, HINTON G E. Acoustic modeling using deep belief networks [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 14-22.
[4] SCHMAH T, HINTON G E, ZEMEL R, et al. Generative versus discriminative training of RBMs for classification of fMRI images [C]∥ Proceedings of the 22rd Annual Conference on Neural Information Processing Systems. Whistler: NIPS, 2008: 1409-1416.
[5] MEMISEVIC R, HINTON G E. Unsupervised learning of image transformations [C]∥ Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 18.
[6] TAYLOR G W, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking [C]∥ Proceedings of 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 631-638.
[7] 林妙真.基于深度学习的人脸识别研究[D].大连:大连理工大学,2013: 24-69.
LIN Miao-zhen. Research on face recognition based on deep learning [D]. Dalian: Dalian University of Technology, 2013: 24-69.
[8] 罗恒.基于协同过滤视角的受限玻尔兹曼机研究[D].上海,上海交通大学,2011: 70-79.
LUO Heng. Restricted Boltzmann machines: a collaborative filtering perspective [D]. Shanghai: Shanghai Jiao Tong University, 2011: 70-79.
[9] LEE H, EKANADHAM C, NG A. Sparse deep belief net model for visual area V2 [C]∥ Proceedings of the 21rd Annual Conference on Neural Information Processing Systems. Vancouver: NIPS, 2007: 873-880.
[10] HINTON G E. A practical guide to training restricted Boltzmann machines [R]. Canada, Toronto University: Machine Learning Group, 2010.
[11] LUO H, CHANG Y N, RUI M S, et al. Sparse group restricted boltzmann machines [C]∥ Proceedings of 25th Conference on Innovative Applications of Artificial Intelligence. San Francisco : AAAI, 2011: 1207-1216.
[12] GUO R, QI H. Partially-sparse restricted boltzmann machine for background modeling and subtraction [C]∥ Proceedings of 2013 IEEE Conference on Machine Learning and Applications. Piscataway: IEEE, 2013: 209-214.
[13] 吴一全,张晓杰,吴诗婳.2维对称交叉熵图像阈值分割[J].中国图像图形学报,2011,11(8): 122-126.
WU Yi-quan, ZHANGE Xiao-jie, WU Shi-hua. Two-dimensional symmetric cross-entropy image thresholding [J]. Journal of Image and Graphics, 2011, 11(8): 122-126.
[14] BENGIO Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009, 2(1): 11-27.
[15] LENG B, ZHANG X, YAO M, et al. A 3D model recognition mechanism based on deep Boltzmann machines [J]. Neuro Computing, 2015, 151(2): 593-602.
[16] SUSSKIND J. The Toronto face database [R]. Canada, Toronto University: Machine Learning Group, 2011.
[17] CHANG C C, LIN C J. LIBSVM: a library for support vector machines [J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27-33.
[18] KUREMOTO T, KIMURA S, KOBAYASHI K, et al. Time series forecasting using a deep belief network with restricted Boltzmann machines [J]. Neuro computing, 2014, 137(5): 47-56.
[19] SRIVASTAVA N, SALAKHUTDINOV R. Multimodal learning with deep Boltzmann machines [J]. Journal of Machine Learning Research, 2014, 15(4): 2949-2980.
[20] SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [C]∥ Proceedings of 12th International Conference on Artificial Intelligence and Statistics. Florida: AISTATS, 2009: 448-455. |