|
|
Application of artificial neural networks to supercritical flamelet model |
Zheng-wei GAO1( ),Tai JIN2,Chang-cheng SONG1,Kun LUO1,Jian-ren FAN1,*( ) |
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China 2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Artificial neural networks (ANN) were utilized to build the library for the flamelet/progress variable (FPV) model and develop the FPV-ANN approach aiming at the problem that the enlarged lookup tables of the flamelet-based combustion model make the computer memory insufficient and slow down the interpolation process. Both the priori analysis and the large-eddy simulation of supercritical hydrothermal flames show that the distributions of temperature, species and other target variables obtained by FPV-ANN and classical FPV method achieve overall good agreement, verifying the accuracy of the FPV-ANN approach. Since the size of the ANN library is only 1% of the classical library, the use of FPV-ANN approach can produce a significant reduction in computer memory consumption during the large-scale parallel simulation. The computational speed of FPV-ANN approach is 30% faster than the classical FPV approach, which confirms that FPV-ANN approach has better computational performance.
|
Received: 29 October 2020
Published: 27 October 2021
|
|
Fund: 国家重点研发计划资助项目(2016YFB0600102) |
Corresponding Authors:
Jian-ren FAN
E-mail: gaozw@zju.edu.cn;fanjr@zju.edu.cn
|
基于人工神经网络的超临界小火焰模型研究
为了解决超临界小火焰燃烧模型数据库过于庞大,导致计算机内存不足和取值性能下降的问题,提出使用人工神经网络(ANN)进行建库的超临界小火焰/过程变量模型FPV-ANN. 在先验性分析及在超临界水热火焰的大涡模拟计算中发现,FPV-ANN方法在温度、组分和其他目标变量的分布与传统FPV方法得到的结果吻合,说明FPV-ANN方法的准确性与传统FPV方法一致. 由于人工神经网络小火焰库大小只有传统库的1%,FPV-ANN方法在大规模并行计算中消耗更少的计算机内存. FPV-ANN方法的计算速度比传统FPV方法提升了30%. 可以看出,提出的FPV-ANN方法具有更好的计算性能.
关键词:
小火焰模型,
燃烧模拟,
人工神经网络(ANN),
小火焰库建库方法,
计算性能
|
|
[1] |
NORBERT P Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10 (3): 319- 339
doi: 10.1016/0360-1285(84)90114-X
|
|
|
[2] |
NORBERT P. Turbulent combustion [M]. Cambridge: Cambridge University Press, 2000.
|
|
|
[3] |
PITSCH H Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics, 2006, 38: 453- 482
doi: 10.1146/annurev.fluid.38.050304.092133
|
|
|
[4] |
BENOIT F, VEYNANTE D, CANDEL S Modeling combustion chemistry in large eddy simulation of turbulent flames[J]. Flow, Turbulence and Combustion, 2015, 94 (1): 3- 42
doi: 10.1007/s10494-014-9579-8
|
|
|
[5] |
STEPHEN B P Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute, 2013, 34 (1): 1- 31
doi: 10.1016/j.proci.2012.09.009
|
|
|
[6] |
MATTHIAS I, SCHMITT C, PITSCH H Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame[J]. Proceedings of the Combustion Institute, 2009, 32 (1): 1527- 1535
doi: 10.1016/j.proci.2008.06.100
|
|
|
[7] |
EMAMI M D, FARD A E Laminar flamelet modeling of a turbulent CH4/H2/N2 jet diffusion flame using artificial neural networks [J]. Applied Mathematical Modelling, 2012, 36 (5): 2082- 2093
doi: 10.1016/j.apm.2011.08.012
|
|
|
[8] |
OWOYELE O, KUNDU P, AMEEN M M, et al Application of deep artificial neural networks to multi-dimensional flamelet libraries and spray flames[J]. International Journal of Engine Research, 2020, 21 (1): 151- 168
doi: 10.1177/1468087419837770
|
|
|
[9] |
ZHANG Y, XU S, ZHONG S, et al Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks[J]. Energy and AI, 2020, 2: 100021
doi: 10.1016/j.egyai.2020.100021
|
|
|
[10] |
WELLER H G, TABOR G, JASAK H, et al A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12 (6): 620- 631
doi: 10.1063/1.168744
|
|
|
[11] |
GAO Z, WANG H, LUO K, et al Evaluation of real-fluid flamelet/progress variable model for laminar hydrothermal flames[J]. The Journal of Supercritical Fluids, 2019, 143: 232- 241
doi: 10.1016/j.supflu.2018.08.014
|
|
|
[12] |
BILGER R W, STÅRNER S H, KEE R J On reduced mechanisms for methane air combustion in non-premixed flames[J]. Combustion and Flame, 1990, 80 (2): 135- 149
doi: 10.1016/0010-2180(90)90122-8
|
|
|
[13] |
REN M, WANG S, ZHANG J, et al Characteristics of methanol hydrothermal combustion: detailed chemical kinetics coupled with simple flow modeling study[J]. Industrial and Engineering Chemistry Research, 2017, 56 (18): 5469- 5478
doi: 10.1021/acs.iecr.7b00886
|
|
|
[14] |
PENG D Y, ROBINSON D B A new two-constant equation of state[J]. Industrial and Engineering Chemistry Fundamentals, 1976, 15 (1): 59- 64
doi: 10.1021/i160057a011
|
|
|
[15] |
CHUNG T H, AJLAN M, LEE L L, et al Generalized multiparameter correlation for nonpolar and polar fluid transport properties[J]. Industrial and Engineering Chemistry Research, 1988, 27 (4): 671- 679
doi: 10.1021/ie00076a024
|
|
|
[16] |
PITSCH H. FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame calculations[EB/OL]. [2020-09-20]. https://www.itv.rwth-aachen.de/downloads/flamemaster/.
|
|
|
[17] |
PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of turbulent combustion [D]. Stanford: Stanford University, 2001.
|
|
|
[18] |
PIERCE C D, MOIN P Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, 504: 73
doi: 10.1017/S0022112004008213
|
|
|
[19] |
SMAGORINSKY J General circulation experiments with the primitive equations: I. the basic experiment[J]. Monthly Weather Review, 1963, 91 (3): 99- 164
doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
|
|
|
[20] |
ABADI M, BARHAM P, CHEN J, et al. Tensorflow: a system for large-scale machine learning [C]// 12th Symposium on Operating Systems Design and Implementation. Savannah, GA: USENIX, 2016: 265-283.
|
|
|
[21] |
PRÍKOPSKÝ K. Characterization of continuous diffusion flames in supercritical water [D]. Zurich: Swiss Federal Institute of Technology, 2007.
|
|
|
[22] |
GAO Z, WANG H, SONG C, et al Large-eddy simulation of hydrothermal flames using extended flamelet/progress variable approach[J]. The Journal of Supercritical Fluids, 2020, 163: 104843
doi: 10.1016/j.supflu.2020.104843
|
|
|
[23] |
WEN X, WANG H, LUO Y, et al Evaluation of flamelet/progress variable model for laminar pulverized coal combustion[J]. Physics of Fluids, 2017, 29 (8): 083607
doi: 10.1063/1.4999335
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|