Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1960-1967    DOI: 10.3785/j.issn.1008-973X.2021.10.018
    
Experimental study on preheating pulverized coal air flow by heat exchanger using thermal oil
Zhen-ya LAI1(),Rui MAO2,Yuan LI2,Ping-an ZHANG2,Xue-sen DU2,Hao ZHOU1,*()
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Rundian Energy Science and Technology Limited Company, Zhengzhou 450052, China
Download: HTML     PDF(1415KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel technology of pre-heating the pulverized coal air flow before the pulverized coal entering the combustion chamber was proposed to reduce the cooling effect of the primary air on the furnace and accelerate the combustion of the pulverized coal. A shell-and-tube heat exchanger with finned plate that used heat transfer oil to preheat pulverized coal air flow was designed. A pilot scale test bench was constructed to experimentally analyze the effects of oil temperature, oil mass flow, air temperature, air speed, and coal-air mass ratio on the heat transfer characteristics of the system and the resistance characteristics of the test bench. The experimental results verified the technical feasibility of the heat exchanger using heat transfer oil to preheat the primary pulverized coal air flow. The proposed preheating technology had practical significance for environmental protection and energy saving. The experimental results showed that the heat transfer oil at 190 ℃ could preheat the pulverized coal air flow from 58. 4 ℃ to above 113 ℃ when the coal-air mass ratio was 0.15. The proposed preheating process was beneficial to improve the ignition performance of the pulverized coal air flow and promote the low-load stable combustion of the pulverized coal boiler.



Key wordsutility boiler      pulverized coal      preheat      heat exchanger      ignition characteristics     
Received: 18 November 2020      Published: 27 October 2021
CLC:  TK 16  
Fund:  国家自然科学基金创新研究群体资助项目(51621005)
Corresponding Authors: Hao ZHOU     E-mail: lzywyyx2015@163.com;zhouhao@cmee.zju.edu.cn
Cite this article:

Zhen-ya LAI,Rui MAO,Yuan LI,Ping-an ZHANG,Xue-sen DU,Hao ZHOU. Experimental study on preheating pulverized coal air flow by heat exchanger using thermal oil. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1960-1967.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.018     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1960


导热油换热器预热煤粉气流的试验研究

提出在煤粉进入燃烧室之前对煤粉气流进行预热处理的新型工艺,减轻一次风对炉膛的冷却效应,加速煤粉燃烧. 设计采用导热油预热煤粉气流的带翅板管壳式换热器,搭建中试规模试验台,通过实验研究油温、油质量流量、风温、风速、煤风质量比对系统换热特性及试验台阻力特性的影响. 试验结果验证了该换热器采用导热油来预热一次风煤粉气流的技术可行性,提出的新型预热工艺具有环保节能的现实意义. 试验结果表明,当煤风质量比为0.15时,190 ℃的导热油可以将煤粉气流从58.4 ℃预热到113 ℃以上. 提出的预热工艺有利于改善煤粉气流的着火性能,促进煤粉锅炉的低负荷稳燃.


关键词: 电站锅炉,  煤粉,  预热,  换热器,  着火特性 
Fig.1 Schematic diagram of heat exchanger
Fig.2 Schematic diagram of pilot test system
工况 tin,air /℃ vair /(m·s?1) tin,oil /℃ qm /(t·h?1) R
1 60 22.8 190 0.6 0
2 60 22.8 190 1.4 0
3 60 22.8 190 2.2 0
4 60 22.8 165 1.4 0
5 60 22.8 215 1.4 0
6 60 22.8 270 1.4 0
7 40 13.3 190 1.4 0
8 40 18.4 190 1.4 0
9 40 23.9 190 1.4 0
10 40 22.0 190 1.4 0
11 60 22.0 190 1.4 0
12 80 22.0 190 1.4 0
13 60 22.5 190 1.4 0
14 60 22.5 190 1.4 0.15
15 60 22.5 190 1.4 0.25
Tab.1 Experimental conditions of preheating pulverized coal air flow
材料 tin /℃ ρ /(kg·m?3) cp /(J·kg?1·K?1) λ/(W·m?1·K?1)
导热油 165 769 2505 0.1107
导热油 190 751 2590 0.1078
导热油 215 735 2690 0.1049
导热油 270 691 2860 0.0985
煤粉 60 1400 1130 0.0650
20号钢 7850 465 48
Tab.2 Physical properties of materials
Fig.3 Internal structure and thermocouple position number of heat exchanger
Fig.4 Heat transfer homogeneity of heat exchanger
Fig.5 Effect of inlet oil temperature on axial air temperature profile
Fig.6 Effect of inlet oil temperature on heat transfer characteristics of heat exchanger
Fig.7 Effect of oil mass flow rate on axial air temperature profile
Fig.8 Effect of oil mass flow rate on heat transfer characteristics of heat exchanger
Fig.9 Effect of inlet air temperature on axial air temperature profile
Fig.10 Effect of inlet air temperature on heat transfer characteristics of heat exchanger
Fig.11 Effect of inlet air velocity on air axial temperature profile
Fig.12 Effect of inlet air velocity on heat transfer characteristics of heat exchanger
Fig.13 Effect of coal-air mass ratio on axial air temperature profile
Fig.14 Effect of coal-air mass ratio on heat transfer characteristics of heat exchanger
Fig.15 Resistance characteristics of heat exchanger
[1]   SUGIMOTO M, MARUTA K, TAKEDA K, et al Stabilization of pulverized coal combustion by plasma assist[J]. Thin Solid Films, 2002, 407: 186- 191
doi: 10.1016/S0040-6090(02)00035-4
[2]   KANILO P M, KAZANTSEV V I, RASYUK N I, et al Microwave plasma combustion of coal[J]. Fuel, 2003, 82: 187- 193
doi: 10.1016/S0016-2361(02)00201-6
[3]   崔凤誉, 张玉周 等离子煤粉点火燃烧器工业性试验研究及应用[J]. 中国电力, 2001, 34 (2): 16- 20
CUI Feng-yu, ZHANG Yu-zhou Industrial experimental study and application of plasma pulverized coal ignition burner[J]. Electric Power, 2001, 34 (2): 16- 20
doi: 10.3969/j.issn.1004-9649.2001.02.005
[4]   王爱生, 唐宏, 王公林, 等 采用等离子体直接引燃煤粉技术的研究及应用[J]. 中国电力, 2002, 35 (1): 80- 84
WANG Ai-sheng, TANG Hong, WANG Gong-lin, et al Application and development of plasma ignition technology for coal powder[J]. Electric Power, 2002, 35 (1): 80- 84
doi: 10.3969/j.issn.1004-9649.2002.01.020
[5]   张孝勇, 王雨蓬, 姜伟力, 等 等离子体点燃煤粉的热物理分析[J]. 中国电力, 2005, 38 (12): 82- 84
ZHANG Xiao-yong, WANG Yu-peng, JIANG Wei-li, et al Thermalphysicals analysis of plasma igniting pulverized coal powder[J]. Electric Power, 2005, 38 (12): 82- 84
doi: 10.3969/j.issn.1004-9649.2005.12.019
[6]   LI W, CEN K, ZHENG C, et al Induction-heating ignition of pulverized coal stream[J]. Fuel, 2004, 83: 2103- 2107
doi: 10.1016/j.fuel.2004.06.011
[7]   周俊虎, 石伟, 周志军, 等 煤粉浓度对煤粉高温热壁点火影响的试验研究[J]. 中国电机工程学报, 2003, 23 (7): 208- 211
ZHOU Jun-hu, SHI Wei, ZHOU Zhi-jun, et al Experimental study of effect of pulverized coal concentration on coal ignition with hot wall[J]. Proceedings of the CSEE, 2003, 23 (7): 208- 211
doi: 10.3321/j.issn:0258-8013.2003.07.042
[8]   周俊虎, 聂欣, 周志军, 等 无油点火燃烧器内煤粉浓度与着火点关系试验研究[J]. 热力发电, 2004, 33 (11): 14- 16
ZHOU Jun-hu, NIE Xin, ZHOU Zhi-jun, et al Experimental study on the relationship between coal concentration and ignition point in oil-free ignition burner[J]. Thermal Power Generation, 2004, 33 (11): 14- 16
doi: 10.3969/j.issn.1002-3364.2004.11.005
[9]   周俊虎, 聂欣, 周志军, 等 无油点火燃烧器着火距离的影响因素[J]. 浙江大学学报:工学版, 2006, 40 (10): 1797- 1800
ZHOU Jun-hu, NIE Xin, ZHOU Zhi-jun, et al Influencing factors of ignition distance in no-oil ignition combustor[J]. Journal of Zhejiang University:Engineering Science, 2006, 40 (10): 1797- 1800
doi: 10.3785/j.issn.1008-973X.2006.10.028
[10]   LI Z, LIU C, ZHU Q, et al Experimental studies on the effect of the pulverized coal concentration on lean-coal combustion in a lateral-ignition tiny-oil burner[J]. Energy and Fuels, 2010, 24 (7/8): 4161- 4165
[11]   LIU C, LI Z, ZHAO Y, et al Influence of coal-feed rates on bituminous coal ignition in a full-scale tiny-oil ignition burner[J]. Fuel, 2010, 89: 1690- 1694
doi: 10.1016/j.fuel.2009.08.008
[12]   LI Z, LIU C, YANG Z, et al Influence of the coal feed rate on lean coal ignition in a full-scale tiny-oil ignition burner[J]. Energy and Fuels, 2010, 24 (1): 375- 378
doi: 10.1021/ef900859q
[13]   OUYANG Z, ZHU J, LU Q Experimental study on preheating and combustion characteristics of pulverized anthracite coal[J]. Fuel, 2013, 113: 122- 127
doi: 10.1016/j.fuel.2013.05.063
[14]   JUN W, ZHU J, LU Q Experimental study on combustion characteristics and NOx emissions of pulverized anthracite preheated by circulating fluidized bed[J]. Journal of Thermal Science, 2011, 20 (4): 355- 361
doi: 10.1007/s11630-011-0481-6
[15]   ZHU J, OUYANG Z, LU Q An experimental study on NOx emissions in combustion of pulverized coal preheated in a circulating fluidized bed[J]. Energy and Fuels, 2013, 27 (12): 7724- 7729
doi: 10.1021/ef402146w
[16]   ZHU S, LU Q, ZHU J, et al Experimental study on NOx, emissions of pulverized bituminous coal combustion preheated by a circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92 (2): 247- 256
doi: 10.1016/j.joei.2018.01.011
[17]   OUYANG Z, LIU W, ZHU J, et al Experimental research on combustion characteristics of coal gasification fly ash in a combustion chamber with a self-preheating burner[J]. Fuels, 2018, 215 (1): 378- 385
[18]   SONG W, LI S, OUYANG Z Operational performance characteristics of a novel fluidized bed with the internal separator for pulverized coal self-sustained preheating[J]. Powder Technology, 2020, 36 (1): 782- 790
[19]   李永毅, 徐钢, 薛小军, 等 燃煤电站一次风加热流程优化的高效集成系统性能分析[J]. 中国电机工程学报, 2017, 37 (20): 144- 153
LI Yong-yi, XU Gang, XUE Xiao-jun, et al Performance analysis of the efficient integrated system of coal-fired power plant based on optimized primary air heating process[J]. Proceedings of the CSEE, 2017, 37 (20): 144- 153
[20]   刘仁生, 曹晨忠, 赵兵, 等 预热高炉喷吹煤粉提高燃烧效率的研究[J]. 煤炭加工与综合利用, 2010, 6 (6): 46- 48
LIU Ren-sheng, CAO Chen-zhong, ZHAO Bing, et al Research on preheating pulverized coal injected in blast furnace to improve combustion efficiency[J]. Coal Processing and Comprehensive Utilization, 2010, 6 (6): 46- 48
doi: 10.3969/j.issn.1005-8397.2010.06.015
[21]   杨永昌. 高炉喷吹煤粉预热工艺及预热对煤粉理化性质的影响[D]. 北京: 北京科技大学, 2009.
YANG Yong-chang. The blast furnace injection coal powder preheating and impact on its physical and chemical properties [D]. Beijing: Beijing University of Science and Technology, 2009.
[22]   FRANK S, JENS L, NICOLE H, et al Successful preheating of pulverized hard coal and lignite for blast furnace PCI[J]. Steel Research International, 2016, 86 (8): 993- 1001
[23]   郭朝令, 徐建国, 魏兆龙 煤粉气流着火热的计算[J]. 河南教育学院学报:自然科学版, 1999, 8 (2): 35- 36
GUO Zhao-ling, XU Jian-guo, WEI Zhao-long Calculation of the ignition heat of pulverized coal air flow[J]. Journal of Henan College of Education:Natural Science, 1999, 8 (2): 35- 36
[24]   沈珞婵, 高翔, 骆仲泱 气固两相流横掠圆管传热的研究[J]. 中国电机工程学报, 1996, 16 (6): 400- 405
SHEN Luo-chan, GAO Xiang, LUO Zhong-yang Heat transfer of tubes in gas-solid cross flow[J]. Proceedings of the CSEE, 1996, 16 (6): 400- 405
doi: 10.3321/j.issn:0258-8013.1996.06.009
[1] Li NIE,Run-xia CAI,Jia-yi LU,Wei CHENG,Wen-jie ZHANG,Li-ming GONG,Da-yong XUE,Man ZHANG,Hai-rui YANG,Jun-fu LV. Improvements of non-uniform distribution of tube wall temperatures in circulating fluidized bed boiler’s external heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 578-585.
[2] Kai HUANG,Zhi-jian SUN,Wen-ying QIAN,Ji-hu YANG,Zi-tao YU,Ya-cai HU. Dimensionless material cost model of media gas-gas heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1362-1368.
[3] HAN Lian-jin, WU Jiang-hong, XUE Zhi-qiang. Simulation and improvement of heat pump air conditioning system for electric bus[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 641-648.
[4] YANG Ji-hu, SUN Zhi-jian, YUAN Rui-feng, HUANG Hao, CHEN Tian-yu, HU Ya-cai. Study on heat transfer and ash deposit characteristics of fluoroplastic steel air-preheater in power plant[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 577-583.
[5] DUAN Yi, CHENG Le-ming, WU Xue-song, QIU Kun-zan, LUO Zhong-yang. Experimental study on premixed combustion in two-layer porous media with embedded heat exchangers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1626-1632.
[6] LI Hua-shan, WANG Han-zhi, WANG Ling-bao, WANG Xian-long, BU Xian-biao. Influence of solution heat exchangers on double absorption heat transformer (DAHT)[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 471-477.
[7] WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi. Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1537-1544.
[8] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1242-1248.
[9] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 1-2.
[10] WANG Zi-yang, ZHANG Yi-ping, ZHAN Guo-hui, YU Ya-nan. Study on heat transfer model of underground heat exchangers
with groundwater advection
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1450-1456.
[11] ZHOU Zhi-jun, JIANG Xu-dong, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Ignition model and kinetic parameters analysis of oxygen-enriched
combustion of pulverized coal
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 482-488.
[12] ZHANG Chang-xing, HU Song-tao , LIU Yu-feng, CONG Xiao-chun. Determination method for rock-soil thermal properties
based on system optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2237-2242.
[13] YAN Wei-guo, YU Xiao-li, LU Guo-dong, ZHOU Jian-wei. Heat transfer and pressure drop of heat pipe heat exchanger[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 132-135.
[14] ZHONG Xun, SHU Xiao-Chi, TUN Dun, JIANG Beng-Zao. Experimental investigation on alumina nanofluids in vehicle heat exchanger[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 761-764.