The structure scheme of heavy-duty intelligent stacking equipment was proposed aiming at the goods handling requirements of heavy duty, high precision, high reliability and long distance. The calculation method of the comprehensive stiffness of stacking equipment based on the calculation method of the contact force of V-type roller was proposed through the analysis of working principle and bearing force of stacking equipment. A calculation example of stacking equipment was given. The finite element method was used to solve contact stiffness of V-type guide rail and comprehensive deformation of stacking equipment compared with the theoretical calculation results. The accuracy of the theoretical method was verified. The structure of the gantry column and the three-level cargo fork was optimized by establishing optimization models for maximizing stiffness as optimization objective. The optimal structure of the column and the optimal section parameters of fork were obtained. The actual operation of stacking equipment was conducted, and its comprehensive deflections under static loads were tested. Results show that the optimized stacking equipment can meet the requirements of engineering applications.
Fig.2Stretching principle diagram of three-stage fork
Fig.3Working principle of stacking equipment
Fig.4Flowchart of stiffness modeling
Fig.5Mechanical model of stacking equipment
Fig.6Installation diagram of V-type roller groups
Fig.7Stress of V-type rollers in steady state
Fig.8Stress of V-type rollers in overturning state
Fig.9Stress analysis of gantry column
Fig.10Stress analysis of three-stage cargo fork
Fig.11Calculation of comprehensive deflection
组件
材料
ρ /(g·cm?3)
E /GPa
ν
货叉、底座
不锈钢
7.75
193
0.31
立柱、底板
Q345
7.85
206
0.28
滚轮、导轨
轴承钢
7.81
206
0.30
Tab.1Material properties of stacking equipment
部件
i
mi /kg
zi /mm
底板
1
630
0
龙门立柱
2
1040
?130
货叉支架
3
350
?200
货叉
4
180
850
货物
5
800
1700
Tab.2Component parameters of stacking equipment
参数
数值
参数
数值
I1
9.45×105 mm4
b
400
I2
1.71×106 mm4
c
200
I3
5.21×105 mm4
d
400
a
600
e
600
Tab.3Structural parameters of three-stage cargo fork
V型导轨
龙门立柱
三级货叉
α/rad
δq/mm
β/rad
u/mm
θ/rad
w/mm
5.25×10?6
0.005
2.6×10?4
0.416
1.5×10?2
12.818
Tab.4Calculation results of deflection and angle
Fig.12Calculation model of V-type rollers
滚轮编号
Fx /N
Fy /N
Fz /N
F /N
1
2 148
5 431
1 397
6 005
2
1 253
4 385
?850
4 639
3
?2 752
3 579
1 509
4 760
4
2 038
6 143
967
6 544
5
1 351
6 854
3 530
7 827
Tab.5Calculation results of inner rollers
Fig.13Rigidness curves under stable and overturning state
Fig.14Calculation result of total deformation of equipment
方向
dT /mm
dF /mm
Ed /%
y
13.297
13.924
4.7
z
0.426
0.463
8.7
Tab.6Comparison of comprehensive stiffness of stacking equipment under 800 kg cargo weight
Fig.15Preliminary structure of gantry columns
Fig.16Topology optimization result and optimized model
状态
dco /mm
σco /MPa
mco /kg
优化前
0.765
104.682
856.4
优化后
0.794
117.406
749.4
Tab.7Comparisons of calculation results before and after optimization of column
Fig.17Parameters optimization of cargo fork
Fig.18Preliminary structure of cargo fork
变量
名称
当前取值
取值下限
取值上限
D1
上叉宽
160
150
170
D2
上叉高
55
50
60
D3
中叉宽
140
130
150
D4
中叉高
55
50
60
Tab.8Parameter setting of design variables mm
Fig.19Sensitivity analysis of cargo fork parameters
方案序号
D1/mm
D2/mm
D3/mm
D4/mm
da/mm
σre/MPa
mf1/kg
mf2/kg
1
160
55
140
55
20.18
196.59
19.63
34.77
2
150.26
54.09
130.55
58.44
18.88
178.45
18.72
33.96
3
151.24
56.97
131.27
59.85
17.21
182.97
19.25
34.25
4
151.49
57.21
130.37
52.82
18.27
179.27
19.30
33.14
5
151
57
131
60
17.43
189.26
19.21
34.51
Tab.9Comparison of calculation results of reference points
步骤
dy /mm
dz /mm
da /mm
优化前
24.859
0.965
24.934
优化后
18.860
0.841
18.968
Tab.10Comparisons of comprehensive stiffness before and after optimization of stacking equipment
Fig.20Testing principles of stacking equipment
Fig.21Leica laser tracker and target
m5 /kg
dvt /mm
dvf /mm
dte /mm
100
1.351
1.404
1.712
300
4.053
4.211
4.441
500
6.754
7.020
7.227
800
10.805
11.231
11.335
Tab.11Comparisons of vertical deflections of cargo fork
Fig.22Comparison of vertical comprehensive deflections
[1]
蔡安江, 应嘉奇, 王坚, 等 分散式立体仓库堆垛机调度模型[J]. 计算机集成制造系统, 2016, 22 (3): 793- 799 CAI An-jiang, YING Jia-qi, WANG Jian, et al Scheduling model of crane in distributed automated warehouse[J]. Computer Integrated Manufacturing Systems, 2016, 22 (3): 793- 799
[2]
柳赛男, 柯映林, 李江雄, 等 基于调度策略的自动化仓库系统优化问题研究[J]. 计算机集成制造系统, 2006, 12 (9): 1438- 1443 LIU Sai-nan, KE Ying-lin, LI Jiang-xiong, et al Optimization for automated warehouse based on scheduling policy[J]. Computer Integrated Manufacturing Systems, 2006, 12 (9): 1438- 1443
doi: 10.3969/j.issn.1006-5911.2006.09.015
[3]
章真雄. 40m高单立柱巷道堆垛机结构设计与分析[D]. 苏州: 苏州大学, 2014: 2-3. ZHANG Zhen-xiong. Structural design and analysis of 40m high single column roadway stacker [D]. Suzhou: Suzhou University, 2014: 2-3.
[4]
李杲. 有轨巷道式堆垛机机械结构的研究[D]. 兰州: 兰州交通大学, 2016: 10-20. LI Gao. Research on the mechanical structure of railroad laneway-stacker [D]. Lanzhou: Lanzhou Jiaotong University, 2016: 10-20.
[5]
宁波, 吕志军, 娄文斌 基于ANSYS Workbench的堆垛机结构分析与优化[J]. 机械设计与制造, 2012, 33 (6): 77- 79 NING Bo, LV Zhi-jun, LOU Wen-bin Analysis and optimization of stacker structure based on ANSYS Workbench[J]. Machinery Design and Manufacture, 2012, 33 (6): 77- 79
doi: 10.3969/j.issn.1001-3997.2012.06.029
[6]
马维金, 熊诗波, 熊晓燕 基于模态理论的振动结构声辐射信号特征提取方法及其应用[J]. 机械工程学报, 2005, 41 (5): 15- 20 MA Wei-jin, XIONG Shi-bo, XIONG Xiao-yan Method for sound signal characteristic extraction based on modal analysis and its application[J]. Journal of Mechanical Engineering, 2005, 41 (5): 15- 20
doi: 10.3321/j.issn:0577-6686.2005.05.003
[7]
TAKAHASHI M, KINOSHITA S, KATO H, et al Positioning control of a stacker crane using a robust simple adaptive control method[J]. IFAC Proceedings Volumes, 2004, 37 (12): 161- 166
doi: 10.1016/S1474-6670(17)31461-1
[8]
HAJDU S, GASPAR P Reducing the mast vibration of single-mast stacker cranes by gain-scheduled control[J]. International Journal of Applied Mathematics and Computer Science, 2016, 26 (4): 791- 802
doi: 10.1515/amcs-2016-0056
[9]
欧阳永强, 张新艳 考虑堆垛机加减速的节能自动立库设计[J]. 浙江大学学报: 工学版, 2019, 53 (9): 1681- 1688 OUYANG Yong-qiang, ZHANG Xin-yan Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (9): 1681- 1688
[10]
ROUWENHORST B, REUTER B, STOCKRAHM V, et al Warehouse design and control: framework and literature review[J]. Europe Journal of Operation Research, 2000, 122 (3): 515- 533
[11]
LIU D B, MOU S D, LU M X, et al Travel time model of a new compact storage system[J]. International Journal of Control and Automation, 2014, 7 (7): 447- 460
doi: 10.14257/ijca.2014.7.7.37
[12]
侯瑞, 吕志军, 杨光辉, 等 立体仓库堆垛机取货装置研究[J]. 物流技术, 2016, 35 (11): 50- 54 HOU Rui, LV Zhi-jun, YANG Guang-hui, et al Study on retrieving mechanism of stackers in AS/RS[J]. Logistics Technology, 2016, 35 (11): 50- 54
doi: 10.3969/j.issn.1005-152X.2016.11.012
[13]
田红亮, 郑金华, 陈甜敏, 等 直线运动滚动导轨副的法向接触力学模型[J]. 西安交通大学学报, 2016, 50 (5): 1- 11 TIAN Hong-liang, ZHENG Jin-hua, CHEN Tian-min, et al Normal contact mechanics model of linear motion rolling guideway pair[J]. Journal of Xi’an Jiaotong University, 2016, 50 (5): 1- 11
doi: 10.7652/xjtuxb201605001
[14]
冯健文, 赵美玲, 陈伟就, 等 滚柱直线导轨副的刚度计算及验证[J]. 机电工程技术, 2013, 42 (8): 159- 162 FENG Jian-wen, ZHAO Mei-ling, CHEN Wei-jiu, et al The calculation and verification for the rigidity of the roller linear guide[J]. Mechanical and Electrical Engineering Technology, 2013, 42 (8): 159- 162
doi: 10.3969/j.issn.1009-9492.2013.08.042
[15]
贾维新, 郝志勇, 徐红梅 基于结构优化方法的单缸机机体轻量化设计[J]. 浙江大学学报: 工学版, 2008, 42 (2): 224- 228 JIA Wei-xin, HAO Zhi-yong, XU Hong-mei Light-weight design of single cylinder engine block based on structure optimization[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (2): 224- 228
[16]
丁渊明, 王宣银 串联机械臂结构优化方法[J]. 浙江大学学报: 工学版, 2010, 44 (12): 2360- 2364 DING Yuan-ming, WANG Xuan-yin Optimization method of serial manipulator structure[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (12): 2360- 2364
[17]
董琛. 卧式双机联合钻铆系统综合刚度场建模和实验[D]. 杭州: 浙江大学, 2019: 63-65. DONG Chen. Modeling and experiment of the general end stiffness of automatic horizontal dual-machine cooperative drilling and riveting system [D]. Hangzhou: Zhejiang University, 2019: 63-65.