|
|
Remaining useful life prediction of turbofan engine based on similarity in multiple time scales |
Yu-hui XU( ),Jun-qing SHU,Ya SONG,Yu ZHENG,Tang-bin XIA*( ) |
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract A novel method based on health index similarity in multiple time scales with autoencoder (AE MTS-HI) was proposed aiming at the shortage of the traditional similarity-based method in extracting health index and similarity matching. Autoencoder was applied to construct the health index based on monitoring data, which can minimize the loss of nonlinear information. The health index in multiple time scales was developed for similarity matching by considering the fluctuation of the length of test degradation trajectories. The method can remove the accuracy limitation caused by fixed time scales and enhance the prediction robustness. Performance of the proposed method was evaluated on public turbofan engines datasets. Results demonstrate that the method can improve the remaining useful life (RUL) prediction accuracy and provide stable support for predictive maintenance.
|
Received: 03 November 2020
Published: 27 October 2021
|
|
Fund: 国家自然科学基金资助项目(51875359);上海市自然科学基金资助项目(20ZR1428600);上海商用飞机系统工程科创中心联合研究基金资助项目(FASE-2021-M7);教育部-中国移动联合基金建设项目(MCM20180703) |
Corresponding Authors:
Tang-bin XIA
E-mail: xuyuhui@sjtu.edu.cn;xtbxtb@sjtu.edu.cn
|
基于多时间尺度相似性的涡扇发动机寿命预测
针对传统相似性方法在提取健康指标和相似性匹配上存在的不足,提出结合自编码器神经网络的基于多时间尺度健康指标相似性的预测方法(AE MTS-HI). 采用自编码器从状态监测数据中提取表征发动机退化状态的健康指标,降低提取过程非线性信息的损失. 将测试退化轨迹长度的波动纳入考量,针对性地设计多时间尺度的健康指标进行相似性匹配. 这不仅可以克服单一时间尺度匹配导致的精度限制,而且可以提高预测的鲁棒性. 在涡扇发动机的公开数据集上验证所提方法的性能. 结果表明,利用该方法能够显著提升剩余使用寿命(RUL)的预测精度,为预知维护提供有力支撑.
关键词:
剩余使用寿命(RUL),
多时间尺度,
自编码器,
相似性方法,
涡扇发动机
|
|
[1] |
TAHAN M, TSOUTSANIS E, MUHAMMAD M, et al Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: a review[J]. Applied Energy, 2017, 198: 122- 144
doi: 10.1016/j.apenergy.2017.04.048
|
|
|
[2] |
XIA T, DONG Y, XIAO L, et al Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering and System Safety, 2018, 178: 255- 268
doi: 10.1016/j.ress.2018.06.021
|
|
|
[3] |
LIU Y, HU X, ZHANG W Remaining useful life prediction based on health index similarity[J]. Reliability Engineering and System Safety, 2019, 185: 502- 510
doi: 10.1016/j.ress.2019.02.002
|
|
|
[4] |
JAVED K, GOURIVEAU R, ZERHOUNI N State of the art and taxonomy of prognostics approaches, trends of prognostics applications and open issues towards maturity at different technology readiness levels[J]. Mechanical Systems and Signal Processing, 2016, 94: 214- 236
|
|
|
[5] |
WANG H, MA X, ZHAO Y An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction[J]. Mechanical Systems and Signal Processing, 2019, 127: 370- 387
doi: 10.1016/j.ymssp.2019.03.019
|
|
|
[6] |
王浩伟, 徐廷学, 刘勇 基于随机参数Gamma过程的剩余寿命预测方法[J]. 浙江大学学报:工学版, 2015, 49 (4): 699- 704 WANG Hao-wei, XU Ting-xue, LIU Yong Remaining useful life prediction method based on Gamma processes with random parameters[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (4): 699- 704
|
|
|
[7] |
ZHANG H, MIAO Q, ZHANG X, et al An improved unscented particle filter approach for lithium-ion battery remaining useful life prediction[J]. Microelectronics Reliability, 2018, 81: 288- 298
doi: 10.1016/j.microrel.2017.12.036
|
|
|
[8] |
CHEN Z, LI Y, XIA T, et al Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy[J]. Reliability Engineering and System Safety, 2019, 184: 123- 136
doi: 10.1016/j.ress.2017.09.002
|
|
|
[9] |
BABU G S, ZHAO P, LI X. Deep convolutional neural network based regression approach for estimation of remaining useful life [C]// Proceedings of the International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2016: 214-228.
|
|
|
[10] |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation [C]// Proceedings of the International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2017: 88-95.
|
|
|
[11] |
WANG T, YU J, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-6.
|
|
|
[12] |
ZIO E, DI MAIO F A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system[J]. Reliability Engineering and System Safety, 2010, 95 (1): 49- 57
doi: 10.1016/j.ress.2009.08.001
|
|
|
[13] |
YOU M Y, MENG G A generalized similarity measure for similarity-based residual life prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2011, 225 (3): 151- 160
doi: 10.1177/0954408911399832
|
|
|
[14] |
谷梦瑶, 陈友玲, 王新龙 多退化变量下基于实时健康度的相似性寿命预测方法[J]. 计算机集成制造系统, 2017, 23 (2): 362- 372 GU Meng-yao, CHEN You-ling, WANG Xin-long Multi-index modeling for similarity-based residual life estimation based on real-time health degree[J]. Computer Integrated Manufacturing Systems, 2017, 23 (2): 362- 372
|
|
|
[15] |
CAI H, JIA X, FENG J, et al A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112- 121
doi: 10.1016/j.isatra.2020.03.007
|
|
|
[16] |
AZEVEDO D, RIBEIRO B, CARDOSO A. Online simulation of methods to predict the remaining useful lifetime of aircraft components [C]// Proceedings of Experiment International Conference. Washington, D. C.: IEEE, 2019: 199-203.
|
|
|
[17] |
CHARTE D, CHARTE F, GARCÍA S, et al A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines[J]. Information Fusion, 2018, 44: 78- 96
doi: 10.1016/j.inffus.2017.12.007
|
|
|
[18] |
REN L, SUN Y, CUI J, et al Bearing remaining useful life prediction based on deep autoencoder and deep neural networks[J]. Journal of Manufacturing Systems, 2018, 48 (Part C): 71- 77
|
|
|
[19] |
MA J, SU H, ZHAO W, et al Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning[J]. Complexity, 2018, 2018: 1- 13
|
|
|
[20] |
CHEN C, LEU J, PRAKOSA S W. Using autoencoder to facilitate information retention for data dimension reduction [C]// 3rd International Conference on Intelligent Green Building and Smart Grid. Washington, D. C.: IEEE, 2018: 1-5.
|
|
|
[21] |
XIA T, SONG Y, ZHENG Y, et al An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182
doi: 10.1016/j.compind.2019.103182
|
|
|
[22] |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-9.
|
|
|
[23] |
HEIMES F O. Recurrent neural networks for remaining useful life estimation [C]// International Conference on Prognostics and Health Management. Washington, D. C.: IEEE, 2008: 1-6.
|
|
|
[24] |
LOUEN C, DING S X, KANDLER C. A new framework for remaining useful life estimation using support vector machine classifier [C]// Proceedings of Conference on Control and Fault-Tolerant Systems. Washington, D. C.: IEEE, 2013: 228-233.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|